
The Journal of Systems and Software 133 (2017) 68–94 

Contents lists available at ScienceDirect 

The Journal of Systems and Software 

journal homepage: www.elsevier.com/locate/jss 

Be more familiar with our enemies and pave the way forward: A 

review of the roles bugs played in software failures 

W. Eric Wong 

a , b , ∗, Xuelin Li b , Philip A. Laplante 

c 

a School of Computer Science and Engineering, University of Electronic Science and Technology of China, China 
b Department of Computer Science, The University of Texas at Dallas, USA 
c Software and Systems Engineering, The Pennsylvania State University, USA 

a r t i c l e i n f o 

Article history: 

Received 8 March 2017 

Accepted 23 June 2017 

Available online 30 June 2017 

Index Terms: 

Accidents 

Bugged software systems 

Software failures 

Mishaps 

Lessons learned 

a b s t r a c t 

There has been an increasing frequency of failures due to defective software that cost millions of dol- 

lars. Recent high profile incidents have drawn increased attention to the risks of failed software systems 

to the public. Yet aside from the Therac-25 case, very few incidents of software failure causing humans 

harm have been proven and widely reported. With increased government oversight and the expanded 

use of social networking for real time reporting of problems, we are only beginning to understand the 

potential for major injury or death related to software failures. However, debugging defective software 

can be costly and time consuming. Moreover, undetected bugs could induce great harm to the public 

when software systems are applied in safety-critical areas, such as consumer products, public infrastruc- 

ture, transportation systems, etc. Therefore, it is vital that we remove these bugs as early as possible. To 

gain more understanding of the nature of these bugs, we review the reported software failures that have 

impacted the health, safety, and welfare of the public. A focus on lessons learned and implications for 

future software systems is also provided which acts as guidelines for engineers to improve the quality of 

their products and avoid similar failures from happening. 

© 2017 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e  

e  

t  

a  

i  

a  

w  

p  

c  

p  

o

 

m  

t  

r  

t  

o  

d  

m  

i  
1. Introduction 

Software is fundamental to our society and pervades our daily

lives. Regardless of age, gender, occupation, or nationality, each

of us depends on software, either directly or indirectly. Yet the

disappointing truth is that software is far from defect-free and

large sums of money are spent each year to fix or maintain

(defective) software. According to a National Institute of Standards

and Technology report ( NIST Report, 2002 ), software bugs cost the

U.S. economy an estimated $59.5 billion annually. 

Software plays an important role in some of humanity’s most

complex systems, especially in safety-critical application areas such

as aeronautics, astronautics, medicine, nuclear power generation,

nuclear energy research, and transportation industries. When em-

ployed in such systems in these and other industries, software is

often responsible for controlling the behavior of electromechanical

components and monitoring their interactions. Since most acci-

dents arise due to a lack of understanding of the requirements or

in the interfaces and interactions among the components ( Leveson,

1995 ), software quality and reliability can have significant impacts

on the overall performance and reliability of safety-critical systems.
∗ Corresponding author. 

E-mail address: ewong@utdallas.edu (W.E. Wong). 

l  

o  

d

http://dx.doi.org/10.1016/j.jss.2017.06.069 

0164-1212/© 2017 Elsevier Inc. All rights reserved. 
Consequently, an important issue that comes up in our research

fforts is that of software safety . Ideally, software should operate as

xpected and not contribute to hazards ( Leveson, 1995 ). However,

his is not always the case since software systems are getting larger

nd much more complex with algorithms, internal and external

nteractions, timing, and general processing than ever before. As

 consequence, for example, if system operations render the soft-

are to an unsafe state or software operations directly or indirectly

resent or lead to a system hazard (as in the case of a safety-

ritical system), the consequences could range from a mere minor

erformance anomaly to a catastrophic accident with not only loss

f money and property, but also possible loss of human life. 

Another significant issue is that the later a bug is detected, the

ore expensive it is to eliminate the bug. Boehm, (1981) studied

he cost factors associated with finding and fixing errors with

espect to different software life cycle phases. The results showed

hat the cost to find and fix a bug after delivery can be upwards

f 100 times more expensive than resolving it during the early

esign phase. In other words, the later a bug is revealed, the

ore activities are required to revalidate the correction. Therefore,

mproving the quality assurance process during the entire software

ifecycle is critical in order to enhance the quality and reliability

f software systems and to save time and efforts in debugging the

efective software systems. 



W.E. Wong et al. / The Journal of Systems and Software 133 (2017) 68–94 69 

Fig. 1. Software projects outcomes status from 1994 to 2010. 

 

e  

e  

c  

e  

o  

p  

e  

t  

o  

t  

h  

h  

t  

(  

f  

o  

o  

f

 

s  

f  

s  

m  

w  

o  

e  

a  

i  

s  

S  

s  

t  

 

l

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i  

m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(  

f  

h  
One way to address this is to consider licensing software

ngineers. Regulation and licensure for engineers has already been

stablished in various areas such as civil engineering, mechani-

al engineering, electrical engineering, etc. The aim of licensing

ngineers is to encourage public welfare, safety, well-being and

ther interests of the general public, and to define the licensure

rocess through which an engineer becomes authorized to practice

ngineering and/or provide engineering professional services to

he public. However, in public discussions pertaining to licensing

f software engineers in the U.S., some contributors opine that

here exist few actual cases of software failure causing humans

arm ( Laplante, 2012 , 2013 ). While the community acknowledges

igh-profile failures like Therac-25, a radiation therapy machine

hat gave massive overdoses of radiation to certain cancer patients

 Leveson and Turner, 1993 ), some might argue that such dangerous

ailures are extremely rare, special cases. To determine the veracity

f this claim, we analyzed numbers of fatal accidents caused

r induced by software and found that software-caused human

atalities do in fact occur with some frequency. 

It is known that some system failures are caused or induced by

oftware. For example, Perrow (2008) suggests that catastrophic

ailures involving significant harm to humans are inevitable as

oftware becomes ever more ubiquitous. Perrow warns that it

ay be only a matter of time − 5 or 10 years perhaps − before

e have a software failure that kills 10 0 0 people or more. As yet,

ur software systems have proven to be robust, and we have not

ncountered a software failure of the magnitude Perrow fears. In

ddition, these researchers tend to overestimate those possible

mpacts and neglect the fact that the quality and reliability of

oftware also improve. Based on the Standish Group’s Chaos

ummary ( The Standish Group International, Inc. 1999 , 2010 ), the

uccess rate of software projects increased significantly since 1994

o 2010, as illustrated in Fig. 1 . Also, the failed rate also decreased.

Moreover, Perrow also interprets certain software failures

eading to injury or death as management failures . For example: 

Here is a tragic case of a management failure. In the 1991 Gulf

War, 28 U.S. troops were killed when the Patriot air defense

system missed an incoming Scud missile ( E. Schmitt, 1991a,b ).

The internal counting system has a tiny rounding error that

made no difference for slow targets – such as airplanes – but

that mattered for missiles if the errors accumulated over an

extended operational time. An upgrade to deal with missiles

was made, but at one place in the upgraded software, a nec-
 O  
essary call to the subroutine was accidentally omitted. This

problem was detected, a warning issued, and a software patch

dispatched to users more than a week before the incident.

Rebooting would correct the error, and only takes a minute.

But the battery at Dhahran was in uninterrupted operation for

over 100 hours, the discrepancies accumulated and the system

failed to intercept the incoming missile. The patch for the

system arrived the next day, after a Scud missile has already

killed the 28 soldiers. 

Similarly, if we accept such an interpretation, the following

ncident caused by software failure can also be viewed as a

anagement failure: 

On Tuesday, September 14, 2004, the Los Angeles International

Airport and other airports in the region suspended operations

due to a failure of the FAA radio system in Palmdale, California

( Geppert, 2004 ; Los Angeles Times, 2004 ). Technicians on-site

failed to perform the periodic maintenance check that must

occur every 30 days and the radio communications system shut

down without warning. The air traffic controllers lost contact

with aircraft in the flight monitored airspace when the primary

voice communications system shut down unexpectedly. More

precisely, it was a Voice Switching and Control System (VSCS)

that failed. This communications outage disrupted about 600

flights (including causing 150 flight cancellations), impacting

over 30,0 0 0 passengers. Flights through the airspace controlled

by the Palmdale, CA facility were either grounded or rerouted

elsewhere. 

The software in the VSCS system used a 32-bit countdown

timer that decremented every millisecond. This allowed for

2 32 –1 ms worth of timer ticks after which the counter reached

zero and the system could no longer decrement the time;

the software then shut down. The manual radio system reset

was needed before the counter reached 2 32 ms (approximately

50 days) to prevent data overload. After this accident, the FAA

deployed a software fix to the VSCS which addressed this

countdown timer issue. 

Based on Perrow’s interpretation, not only all software failures

including failure to test sufficiently, failure to build in sufficient

ault-tolerance, failure to upgrade the software, etc.) but also

ardware failures could be attributed to management failures.

bviously, these management failures are not acceptable explana-



70 W.E. Wong et al. / The Journal of Systems and Software 133 (2017) 68–94 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F  

d  

n

 

t  

t  

d

 

f  

d  

(  

p

 

n  

p  

C  

i  

s  

U  

s

 

a  

o  

w  

a  

t  

o  

b  

t

 

c  

i  

c  

5  

r  

t  

d  

o  

2  

A  

t  
tions since they do not address the root causes specifically which

include hardware and/or software as contributing sources of the

system failure. Various factors exist in directing the software in

these systems to an unstable state. These factors cannot be counted

as management issues since the real causes for these failures could

be effectively unknown, making it difficult to duplicate the issue

and find corrections, or to provide insights on how to improve

the in design, development, and/or quality assurance processes

associated with the software engineering effort. 

In order to highlight the ever growing importance of software

in the failure analysis of systems, we select a representative set

of 59 recent catastrophic accidents and present a brief summary

of them and their software-related causes (whether direct or in-

direct). During this research effort, 104 accidents 1 were examined

during the data collection phase and those accidents which are

not related to software are excluded from the accidents pool of

this study. More importantly, we present the causes of each of the

selected accidents, as found by the formal documented accident

investigations or by performing our own root cause analysis and

discuss any lessons learned. Thus, the contributions of this paper

are two-fold: first, the summary of 59 accidents and the underly-

ing causes (either direct or indirect) are presented to emphasize

the importance of software especially in the field of safety-critical

systems; second, we provide a summary of the lessons learned

from these accidents as well as recommendations which we hope

will help us better understand the role that software played in

these accidents and help us drive appropriate changes to improve

our development practices associated with safety-critical software

and systems development. 

The remainder of the paper is organized as follows: in Section

2 , we list several previous works related to our study. A brief

summary of accidents caused by software failures is presented in

Section 3 . In Section 4 , the losses induced by the accidents are

identified and described. In Section 5 , the contributing factors,

either software-related or non-software related, are presented. In

Section 6 , lessons learned from the previous stated accidents are

identified and summarized. Threats to validity of this research is

discussed in Section 7 and finally our conclusions are drawn in

the final section. 

2. Related and previous works 

In this section, we provide a brief review of publications related

to this paper. In Section 2.1 , surveys on software accidents are

introduced; in Section 2.2 , we include the description of several

papers concentrating on legal perspectives of licensing software

engineers based on accidents incurred by software. 

2.1. Surveys on software accidents 

Perhaps the most comprehensive source for anecdotal informa-

tion on software failures is Peter Neumann’s Risk Forum ( Neumann,

2014 ). First appearing as a regular column in the ACM Software

Engineering Notes , the forum was later transformed to a searchable

database, which contains over 20 0 0 reports of software failures

from 1985 to the present. These listings include general discussion

of software failures, incident reports, and speculations. Sources of

information for these reports include: 
1 The detailed list of these accidents can be retrieved from http://paris.utdallas. 

edu/accident-survey/ . 

N  

t  

l  

I  

c  
• Voluntarily reported failures (e.g., preemptory press releases) 
• Corporate documents 
• News stories 
• Lawsuits 
• Government announcements 

Rahman et al. (2009 ) studied 12-years of data from the Risks

orum, focusing specifically on critical infrastructure systems as

efined in a congressional mandate ( Moteff and Parfmak, 2004 ),

amely: 

• IT infrastructure 
• Telecommunication infrastructure 
• Water supply 
• Electrical power system 

• Oil and gas 
• Road transportation 

• Railway transportation 

• Air transportation 

• Banking and financial services 
• Public safety services 
• Healthcare system 

• Administration and public services 

Using the fault classes Rahman, et al. (2014) defined ( Table 1 ),

hey identified certain “infrastructure failure patterns, propaga-

ion, impacts on public life, and historical trends.” However, they

iscussed no specific cases of software failure. 

Wallace and Kuhn (1999) examined 342 medical device failures,

ocusing on “devices that have been recalled by the manufacturers

ue to software problems.” Using U.S. Federal Drug Administration

FDA) data, they characterized the reported failures along thirteen

rimary symptoms resulting in distributions shown in Table 2 . 

In his widely cited paper ( Charette, 2005 ), Charette lists 30

on-lethal software “fiascoes” (see Table 3 ) of cancelled or failed

rojects that resulted in losses of tens of millions to $4 billion.

harette did not focus on catastrophic failures involving serious

njury or loss of life. Rather, he emphasized management failures,

pecifically poor risk management. Notably, he predicted that the

.S. Healthcare.gov would be a financial failure with the following

tatement which seems to be quite prescient: 

“But this approach is a mere pipe dream if software practices

nd failure rates remain as they are today. Even by the most

ptimistic estimates, to create an electronic medical record system

ill require ten years of effort, $320 billion in development costs,

nd $20 billion per year in operating expenses–assuming that

here are no failures, overruns, schedule slips, security issues,

r shoddy software. This is hardly a realistic scenario, especially

ecause most IT experts consider the medical community to be

he least computer-savvy of all professional enterprises.”

More recently, Wong et al. (2010) reviewed fifteen “recent

atastrophic accidents”. Some led to loss of human life or serious

njury such as the crash of American Airlines Flight 965 on De-

ember 20, 1995, the crash of Korean Air Flight 801 on August

, 1997, the crash of Air France Flight 447 on May 31, 2009, and

adiation overdoses administered at the National Oncology Insti-

ute of Panama. Others of the “catastrophic failures” did not cause

eath or injury, at least not directly. For example, the shutdown

f the Hartsfield–Jackson Atlanta International Airport on April 19,

006 due to software caused false alarm of a Transportation Safety

dministration (TSA) imaging scanner. Similarly, they describe

he possible software causes of the cross-power grid outages in

ortheastern US and Southeastern Canada on August 14, 2003. But

hese and similar incidents may have had second-order effects that

ed to human suffering or death, though this is not established.

n the three named cases described above, the cause of each

atastrophic accident also included either a mechanical failure or



W.E. Wong et al. / The Journal of Systems and Software 133 (2017) 68–94 71 

Table 1 

Fault classes related to critical infrastructures. 

Fault class Description 

Hardware fault All fault classes that affect hardware 

Software fault Fault caused by an error in the software system 

Human error Non-deliberate faults introduced by a mistake 

Natural fault Physical faults that are caused by natural phenomena without human participation 

Overload Service demand exceeds the designed system capacity 

Vandalism Sabotage or other intentional damage 

Malicious logic fault These include trojan horses, logic or timing bombs, viruses, worms, zombies or denial of service attack 

Authorization violation Attempt by an unauthorized person to access or damage network resources, but does not exclude the 

possibility of authorized users who are exceeding their rights. This also includes unauthorized sharing of 

digital contents, like audio, video or software 

Table 2 

Wallace and Kuhn Failure Symptom Taxonomy (1999). 

Symptom Description Percentage of devices showing as primary symptom 

Behavior Device performed an erroneous action 22 

Data Corruption or loss of data 1 

Display Incorrect numbers, text or images shown to users 8 

Function Incorrect calculation or activity 29 

General Not enough information to assign to another category 0 

Input Incorrect information typed by a human, sampled or read from another device 4 

Output Incorrect information sent to another function within the device 19 

Quality User reported “quality” requirements were not met 1 

Response Something happened in the system that should not have 3 

Services An identifiable system service involving multiple functions 10 

System Total system failure 1 

Timing Timing error in a service or device of the system 1 

User instruction Error in a user manual or other documentation 1 

Table 3 

Notable non-fatal software failures (The original table was published in ( Charette, 2005 ) and reproduced as follows). 

Year Company Outcome (costs in U.S. dollars) 

2005 Hudson Bay Co. [Canada] Problems with inventory system contribute to $33.3 million a loss. 

2004–05 UK Inland Revenue Software errors contribute to $3.45 billion a tax-credit overpayment. 

2004 Avis Europe PLC [UK] Enterprise resource planning (ERP) system canceled after $54.5 million b is spent. 

2004 Ford Motor Co. Purchasing system abandoned after deployment costing approximately $400 million. 

2004 J Sainsbury PLC [UK] Supply-chain management system abandoned after deployment costing $527 million b . 

2004 Hewlett-Packard Co. Problems with ERP system contribute to $160 million loss. 

2003–04 AT&T Wireless Customer relations management (CRM) upgrade problems lead to revenue loss of $100 million. 

2002 McDonald’s Corp. The Innovate information-purchasing system canceled after $170 million is spent. 

2002 Sydney Water Corp. [Australia] Billing system canceled after $33.2 million b is spent. 

2002 CIGNA Corp. Problems with CRM system contribute to $445 million loss. 

2001 Nike Inc. Problems with supply-chain management system contribute to $100 million loss. 

2001 Kmart Corp. Supply-chain management system canceled after $130 million is spent. 

20 0 0 Washington, D.C. City payroll system abandoned after deployment costing $25 million. 

1999 United Way Administrative processing system canceled after $12 million is spent. 

1999 State of Mississippi Tax system cancelled after $11.2 million is spent; state receives $185 million damages. 

1999 Hershey Foods Corp. Problems with ERP system contribute to $151 million loss. 

1998 Snap-on Inc. Problems with order-entry system contribute to revenue loss of $50 million. 

1997 U.S. Internal Revenue Service Tax modernization effort canceled after $4 billion is spent. 

1997 State of Washington Department of Motor Vehicle (DMV) system canceled after $40 million is spent. 

1997 Oxford Health Plans Inc. Billing and claims system problems contribute to quarterly loss; stock plummets, leading to $3.4 billion loss in 

corporate value. 

1996 Arianespace [France] System specification and design errors cause $350 million Ariane 5 rocket to explode. 

1996 FoxMeyer Drug Co. $40 million ERP system abandoned after deployment, forcing company into bankruptcy. 

1995 Toronto Stock Exchange 

[Canada] 

Electronic trading system canceled after $25.5 million c is spent. 

1994 U.S. Federal Aviation 

Administration 

Advanced Automation System canceled after $2.6 billion is spent. 

1994 State of California DMV system canceled after $44 million is spent. 

1994 Chemical Bank Software error causes a total of $15 million to be deducted from 10 0,0 0 0 customer accounts. 

1993 London Stock Exchange [UK] Taurus stock settlement system canceled after $600 million c is spent. 

1993 Allstate Insurance Co. Office automation system abandoned after deployment, costing $130 million. 

1993 London Ambulance Service 

[UK] 

Dispatch system canceled in 1990 at $11.25 million c ; second attempt abandoned after deployment, costing $15 

million c . 

1993 Greyhound Lines Inc. Bus reservation system crashes repeatedly upon introduction, contributing to revenue loss of $61 million. 

1992 Budget Rent-A-Car, Hilton 

Hotels, Marriott International, 

and AMR [American Airlines] 

Travel reservation system canceled after $165 million is spent. 

a Converted to U.S. dollars using current exchange rates as of press time. 
b Converted to U.S. dollars using exchange rates for the year cited, according to the International Trade Administration, U.S. Department of Commerce. 
c Converted to U.S. dollars using exchange rates for the year cited, according to the Statistical Abstract of the United States, 1996. 



72 W.E. Wong et al. / The Journal of Systems and Software 133 (2017) 68–94 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

o  

s  

A

2

 

m  

(  

l  

a  

o  

P  

o  

e  

l  

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

fi  

a  

(

 

 

 

 

t  

F  

e  

e

 

l  

o  

a  
human error. In the case of the radiation overdoses, 23 patients

eventually died by September 2005; at least 18 of these deaths

were directly attributed to the administered radiation overdoses.

Three radiological technicians were indicted for murder for failing

to manually verify the required treatment plan; two of them were

found guilty who were sentenced to four years in prison and

barred from practicing their profession for seven years. 

Finally, in a short paper, Zhivich and Cunningham (2009) dis-

cuss three cases of catastrophic failures including the Patriot

Missile Defense System failure, the Panama City radiation incident,

and the Bellingham oil pipeline rupture. 

In the 1991 case, a Patriot Missile Defense System failed to

intercept an Iraqi missile, which killed 28 American soldiers and

wounded many others ( E. Schmitt, May 20, 1991a,b ). Incident

analysis showed that a necessary software patch, which would

have caused the system to intercept the incoming missile, had not

arrived in time to be installed. 

A more recent case of deadly overdoses in radiation treatment

occurred at the Instituto Oncologico Nacional in Panama City in

20 01 ( Borrás, 20 06 ). Treatment-planning software from Multidata

Systems International resulted in incorrectly calculated radiation

dosages. Twenty-eight patients received excessive amounts of

radiation, with fatal consequences for several. Operators triggered

the software error by attempting to overcome the system’s design

limitation in the number and configuration of shielding surfaces

used to isolate an area for irradiation. The operators found that

by drawing an area with a hole in it, they could get the system

to dispense the right dosage in the correct location. However, un-

known to them, drawing such a surface in one direction resulted

in a correct calculation, whereas drawing the surface in the other

direction resulted in an overdose. We can’t blame the software

alone for these incidents—the operators were supposed to perform

manual calculations to ensure that the dosage the software com-

puted was appropriate. They ignored this important check due to

lax administrative procedures at the medical institution. 

The final case involved the 1999 rupture of an oil pipeline in

Bellingham Washington, killing two ( Olympic Pipeline explosion ).

While the pipeline rupture was caused by mechanical failures, it

is alleged that a faulty software monitoring system should have

indicated the problem before the accident which would have

warned the operators to address the mechanical failures before

the accident. 

Zollers et al. (2004 ) discuss several interesting cases of catas-

trophic software failures leading to human injury or death mined

from the Software Risks Digest, including a case in which the

driver of a Honda CRV trapped in a flood died when his electri-

cally driven windows would not wind down, presumably from

a software error. In an Australian case, a boy was killed when

he was hit by a truck with defective brakes. The truck Was not

supposed to be allowed to be driven. However, a valid registra-

tion was granted due to a software failure in the vehicle license

registration system. In March 2003, a Royal Air Force Tornado

supersonic attack aircraft was struck by a missile fired by a U.S.

“Patriot” air missile defense system resulting in the deaths of

two flight lieutenants. In May 2004, the United Kingdom defense

minister admitted that the tornado software failed to identify

itself as friendly and was then classified as an enemy rocket by

the Patriot battery, which promptly shot it down. 

The Zoller cases are notable in that the fatalities resulted from

complex chains of events either started or exacerbated by the

software failure, and not directly through a specific single software

failure. 

Software failures in medical devices seem to pose a greater

threat to the public. Wallace and Kuhn (1999 ) studied FDA data

and counted 383 medical instrument recalls that had been caused

by specific software problems. Referring to the device recalls
n the FDA’s list, many of these failures, although not explicitly

tated, can be related to software errors ( U.S. Food and Drug

dministration, 2013 ). 

.2. Legal perspectives 

While software engineers have been debating the relative

erits of licensing software professionals for quite some time

e.g. Speed, 1995 and Laplante and Thornton, 2011 ), it seems that

awyers have spent a great deal of time thinking about the tort

nd liability issues of software failure. Several significant studies

f this aspect of software failure can be found in the literature.

erlman (1998 ), for example, notes that the once “exotic” uses

f the computer are now “an essential part of modern business

very day.” This means that software is so ingrained in everyday

ife, that it can and does affect human activities sometimes to the

dverse result of deaths or injuries: 

Most computer-related transactions are considered a sale of

“goods” and, as a result, are covered under the provisions of

the Uniform Commercial Code. The U.C.C.’ s warranties, along

with the express terms of the contract, preempt the possibility

of a negligence claim that might have been brought under a

tort theory of liability. Therefore, negligence claims will not

commonly be applied to measure the standard of performance

between the immediate contracting parties. Moreover, negli-

gence claims are generally not proper where only economic

losses are involved. Contracts covering software agreements

typically include strategic standard form exculpatory terms

such as integration clauses, warranty disclaimers, and provi-

sions commonly limiting remedies to the repair or replacement

of defects. The use of these contract provisions shifts the risk

of software failure from the seller to the user. ( Office of the

Under Secretary of Defense for Acquisition September, 1987 ) 

Perlman recounts a set of potential disastrous incidents given

y Phillips (1994) including: 

• Malfunctioning process control software causing explosions,

leaks, etc. at chemical or nuclear plants; example, workers

splattered with molten steel 
• Malfunctioning software causing truck, train, or plane colli-

sions; example, brake failure of automatic pilot and course

direction instruments 
• Malfunctioning software used in medical applications such as

medical monitoring or diagnosis 
• Malfunctioning software causing improper architectural/stress

analysis 
• Malfunctioning software causing an industrial transport robot

delivering parts to a machine to crush an unsuspecting worker 

Referring to the following, Perlman appears to be one of the

rst lawyers to have addressed the issues of professional practice

nd liability for software engineers or computing professions

 Perlman, 1998 ): 

Case law pertaining to lawsuits involving computer-related dis-

putes demonstrates that the courts have not yet expressly ac-

cepted “computer malpractice” as a new tort theory of recovery.

Perlman’s observation seems true today; as recently as 2008,

he U.S. Supreme Court prohibited patients harmed by defects in

DA-approved devices from seeking damages against manufactur-

rs (Riegel v. Medtronic, Inc., 552 U.S. 312, 2008). This ruling may

xtend to other critical systems. 

Brady (20 0 0) also provides a comprehensive review of tort and

egal liability in software failures, but discusses no specific cases

r incidents. Similarly, Pinkney (2002 ) reviews these legal issues

nd provides a brief summary of several cases. Three of the cases



W.E. Wong et al. / The Journal of Systems and Software 133 (2017) 68–94 73 

i  

m  

a  

R  

t

3

 

v  

d  

e  

c  

c

 

i  

t  

a

a  

c  

a  

t  

o  

t  

a  

a  

e  

i

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

nvolve software hacker attacks or failures resulting in significant

onetary losses to MCI, Citibank, and Revlon. Other cases involve

 cyberattack on a telephone loop at the U.S. Air Force lab in

ome, New York, enabling a further attack on NASA and delaying

he launch of the Space Shuttle Atlantis in 1997. 

. Summary of accidents 

To better understand the role that software has played in

arious accidents, we need to first examine some of the technical

etails of selected sets of public accidents, including the chain of

vents leading up the event. Understanding the likely actions and

auses within the chain of events, we then identify and generalize

andidate actions needed to avoid such accidents in the future. 

We have categorized our selected publicly reported accidents

nto two groups based on whether an accident resulted in casual-

ies. Each accident varies by its product architecture, functionality,

nd technology and will be described based on its location 

2 

nd date, scenario, software-related causes, non-software-related

auses, and losses. In selecting these accidents, we removed those

ccidents from the list that did not have reported clear causes as

hese could not add to our understanding of specific deficiencies

r errors from which lessons-learned could be derived. Also note

hat the summaries provided below are a brief synopsis of the

ccidents and are intended to repeat the details of reports; for full

ccounting of the accident suggest reviewing details of the refer-

nces provided for each. We start our discussion with accidents

nvolving the loss of life. 

.1. Accidents involving loss of life 

AA01: Lufthansa flight 2904 ( Lann, 2002 ; Lufthansa Flight

2904 ): 

Location and Date : Warsaw Chopin Airport, Poland, Septem-

ber 14, 1993. 

Scenario : Due to the outdated weather report, the aircraft

hit the ground far beyond the normal touch down point.

In addition, the computer logic prevents the activation of

ground spoilers and engine thrust reversers. The residual

length of the runway was not enough to enable the aircraft

to stop completely under this situation. The aircraft hit the

embankment and an LLZ aerial with the left wing. 

Software-related causes : 

The minimum compression load on each main landing gear

strut to determine whether the aircraft landed or not is

set to 6.3 tons in the software for A320-211. However, the

condition was not fulfilled until eight seconds after both

struts have already touched the ground. After the accident,

the minimum compression load was re-configured to 2.0

tons to avoid similar accidents from happening. 

Non-software-related causes : 

The meteorological conditions were delayed for about three

minutes in compared to the real time. However, the wind

readout obtained from DFDR did not include the declared

time correction. 

Losses : Two fatalities (one crew member and one passenger)

and 56 injures (51 were seriously injured). 

AA02: China airlines flight 140 ( China Airlines A300 Flight 140

at Nagoya ; Federal Aviation Administration Human Factor

Team, 1996 ) 

Location and Date : Nagoya Airport, Japan, April 26, 1994. 
2 If location is revealed or applicable. 

 

 

Scenario : The China Airlines Airbus A300 flight 140 ap-

proaching Nagoya, Japan crashed into a landing zone adja-

cent to the taxiway of the airport. While the co-pilot was

manually flying the aircraft to runway 34 at Nagoya, he inad-

vertently activated the “Go-Around” mode while descending.

This resulted in the consequence that the airplane was nose

up in a steep climb, which caused the airspeed dropped

drastically. As a result, the aircraft stalled struck the ground.

Software-related causes : 

No warning was provided to the pilots when the co-pilot

activated the “Go-Around” mode. As a matter of fact, Air-

bus had the company that implemented the flight control

system to produce an update to the system which would

deactivate the autopilot “when certain manual controls were

applied on the control wheel in ‘Go-Around’ mode”. How-

ever, the update was never patched to the aircraft because

China Airlines believed that the update was not urgent. 

Non-software-related causes : 

The co-pilot mistakenly activated the “Go-Around” mode. 

Losses : 264 fatalities (15 crew and 249 passengers) and 7

injures. 

AA03: American airlines flight 965 ( American Airlines Flight

965: Crash on the Mountain 2010 ; American Airlines Flight

965 ): 

Location and Date : Buga, Colombia, December 20, 1995. 

Scenario : The aircraft departed from Miami, Florida, USA

and was heading to Cali, Colombia when a navigational

error led the plane to crash into a 9800 feet mountain.

Twelve seconds prior to the impact, the aircraft’s Ground

Proximity Warning System was activated and sounded an

alarm warning of the imminent threat. However, while

the captain and first officer attempted to fly clear of the

mountain, previously deployed speed brakes prevented the

avoidance of mountain. 

Software-related causes : 

When programing the navigation computer for the next

approach way point, Rozo was identified as “R” in the

flight charts accessible to the pilots. However, Colombia had

duplicated the identifier for Romeo. Therefore, “ROZO” was

used as the identifier for Rozo instead of “R”. As a result,

Romeo was automatically selected as the next waypoint

since Romeo is a larger city than Rozo. This resulted in the

consequence that the aircraft flew into a valley and finally

incurred the crash. 

Non-software-related causes : 

The pilots tried to climb clear of the mountain. However,

they forgot to disengage the previously deployed speed

brakes, which reduced the rate of climbing. 

Losses : 264 fatalities (15 crew and 249 passengers) and 7

injures. 

AA04: Korean air flight 801 ( Korean Air Flight 801 ; National

Transportation Safety Board, 20 0 0 ; Official Guam Crash Site

Information Web Center ): 

Location and Date : Nimitz Hill, southwest of Antonio B. Won

Pat International Airport, August 6, 1997. 

Scenario : Pilots of the flight mistakenly picked up a signal

as the glide-scope indicator, which turned out to be an

irrelevant signal from an electronic device on the ground.

This resulted in the abruptly descending of the aircraft and

no proper warning was alarmed for the incoming collision.

The flight ended abruptly colliding with Nimitz Hill three

miles southwest of the landing airport. 

Software-related causes : 

Before the accident, the landing airport deliberately modi-

fied the Minimum Safe Altitude Warning System to reduce



74 W.E. Wong et al. / The Journal of Systems and Software 133 (2017) 68–94 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the number of false alarms generated by the system. How-

ever, the modified system could not detect an approaching

aircraft that was below minimum safe altitude. 

Non-software-related causes : 

Several other causes can also be identified, such as the

captain’s poor execution of the non-precision approach, the

pilots’ fatigue, poor communication between the pilots, and

insufficient flight crew training by Korean Air. 

Losses : 228 fatalities (14 crew and 214 passengers) and 25

injures. 

AA05: Spanair flight 5022 ( Levin, 2008 ; Spanair Flight 5022 ): 

Location and Date : Madrid-Barajas Airport, Spain, August 20,

2008. 

Scenario : The flight was scheduled from Madrid-Barajas

Airport to Gran Canaria Airport, Spain. However, the aircraft

crashed momentarily after taking off. The flaps and slats

were not deployed as required for takeoff, which resulted

the aircraft rolled to the right and impacted the ground. 

Software-related causes : 

The Take-off warning system did not work properly. There-

fore, no warning was alarmed to remind the pilots of the

incorrect configuration. 

Non-software-related causes : 

The pilots omitted to check the “flap/slat lever and lights”

item in the After Start checklist. In addition, the copilot

simply repeated that the flaps and slats were properly

configured without actually checking them in the Takeoff

Imminent verification checklist. 

Losses : 154 fatalities (6 crew and 148 passengers) and 18

injures. 

AA06: London ambulance service ( Dalcher, 1999 ): 

Location and Date : London, UK, October 26, 1992. 

Scenario : London Ambulance Service launched the new

Computer-Aided Dispatch (CAD) system on October 26, 1992

to replace human dispatchers with the aim of reducing the

average emergency-response time. However, problems began

to arise after the system was in operation for a few hours. As

the system crashed, dispatchers were not able to send am-

bulances to some locations while several ambulances were

sent to the same location. The situation got worse when

people expecting an ambulance but not getting one started

to call back. The overwhelming amount of calls as well

as numerous alert messages resulted in the unhandled old

calls completely erased off the screen. Furthermore, opera-

tors were not able to empty the queues and the completed

jobs could not always be cleared out. As a result, the system

was gradually drained of its resources and the LAS chose to

terminate the system and switch to semi-manual operation. 

Software-related causes : 

The CAD system went alive without stress testing. Also,

there existed at least 81 known issues when CAD was

launched. For example, the system didn’t perform properly

when handling incomplete data; the user-interface was

problematic; a memory leak existed in a portion of code. 

Non-software-related causes : 

The bad project management by LAS was first to be blamed.

The cost of the project was cut and the system could only

use the old equipment rather than newer and more up-

to-date devices. Then, no backup contingency was in place

when the CAD system went wrong. Also, the training for

operators was done ten months prior to the system became

operational, which resulted in the consequence that the

operators were not familiar with the new CAD system. 

Losses : 20 people may have died due to the lack of emer-
gency system.  
AA07: Therac-25 accidents ( Leveson and Turner, 1993 ): 

Location and Date : Marietta, GA; Ontario, Canada; Yakima,

WA; Tyler, TX, 1985 to 1987. 

Scenario : The Therac-25 was involved in at least six acci-

dents between 1985 and 1987. The patients were given ap-

proximately 100 times overdoses of radiation. The overdoses

occurred when the high-power electron beam was in action

without the beam spreader plate rotated into place. The

failure occurred when a particular nonstandard sequence of

keystrokes was typed on the system terminal and the inter-

lock that was designed to prevent the overdoses would fail. 

Software-related causes : 

The new model reused the software designed for previous

model, Therac-20. As a matter of fact, each bug contained

in the Therac-25 software was also found in the software of

the Therac-20. However, Therac-20 had hardware interlocks

that masked their software defects; but in Therac-25, the

hardware interlock was completely removed. 

Other factors such as insufficient integration testing, am-

biguous user manuals, and no explanation for the error

codes displayed also exacerbated the accidents. 

Non-software-related causes : 

Personnel from the Manufacture, Atomic Energy of Canada

Ltd., as well as operators of the machine did not believe in

complaints, which was likely due to overconfidence. 

Losses : three patients were dead after receiving excessive

radiation. However, the relationship between the deaths and

the excessive radiation is not clear. 

AA08: Misdiagnosis of Ebola patient ( Fox and Johnson, 2014 ): 

Location and Date : Dallas, TX, September, 2014. 

Scenario : Thomas Eric Duncan, the first person who died

from Ebola in the United States, was mistakenly sent home

with apparent symptoms of Ebola early in the morning of

September 26. Texas Health Presbyterian Hospital Dallas

later announced that flawed software and not human error

caused the misdiagnosis. 

Software-related causes : 

In the electronic health records, the workflows for physicians

and nurses are separate, which caused the documentation

of the travel history to be inaccessible for physicians. Even

though the nurse wrote that Duncan had traveled from

Liberia, the doctors who examined him would not notice

that from the electronic file. After the accident, Texas Health

Dallas quickly fixed the software flaw which prevented

further misdiagnoses. 

Losses : The patient succumbed to his disease on October 8,

2014. Two nurses were infected by Ebola. 

AA09: Miscalculated radiation doses at the National Oncol-

ogy Institute, Panama ( Borrás, 2006 ): 

Location and Date : National Oncology Institute, Panama,

August 20 0 0 to March 2001. 

Scenario : In March 2001, the Pan American Health Organi-

zation (PAHO) deployed an investigation concentrating on

the serious radiation overdoses at the National Oncology

Institute of Panama (Instituto Oncológico Nacional, ION)

between August 1, 20 0 0 and March 2, 2001. The investi-

gation showed that a total of 28 patients were exposed to

improper doses ranging from + 10% to + 105%. 

Software-related causes : 

The machine allowed a therapist to draw on a screen in

order to place metal shields for the protection of healthy tis-

sues from radiation. Though the system only allowed the use

of four shields, the therapists at ION tried to trick the soft-

ware by drawing a large shield with a “hole” in the middle.



W.E. Wong et al. / The Journal of Systems and Software 133 (2017) 68–94 75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, they failed to find out that the direction of draw-

ing the “hole” could lead to excessive exposure: drawing it

in one direction, the correct dose could be calculated; but

drawing in another direction, the software recommended

twice the necessary exposure. In addition, no warning mes-

sages in the program and no manual quality control before

the usage also attributed to the radiation overdoses. 

Losses : At least 18 deaths were attributed to the radiation

overdoses. 

AA10: Patriot missile failure ( Lum ; E. Schmitt, 1991a,b ): 

Location and Date : U.S. Army barracks at Dhahran, Saudi

Arabia, February 25, 1991. 

Scenario : On the night of February 25, 1991, a missile fired

by the Iraqi forces was not tracked and intercepted by the

Patriot missile system; the incoming missile hit a U.S. Army

barracks at Dhahran, Saudi Arabia resulting in 28 fatalities. 

Software-related causes : 

A software error in the Patriot system’s radar and tracking

software which caused an accumulating small target posi-

tion error during system operation. Since the Patriot was

developed with the assumption that the system would not

be running for more than 8 hours at a time, when applied

as static defenses, the accumulating error eventually failed

to accurately predict the next air target location during

computation; this caused the Patriot missile system to not

see the incoming missile in time. 

Losses : 28 fatalities. 

AA11: Olympic pipeline explosion : 

Location and Date : Bellingham, Washington, June 10, 1999. 

Scenario : On June 10, 1999, a gasoline pipeline operated by

Olympic Pipeline Company exploded in Bellingham, Wash-

ington’s Whatcom Falls Park. The gasoline vapors exploded

at 5:02 PM, and a fireball was sent down to the Whatcom

Creek and resulted in death of three people. 

Software-related causes : 

A three-year investigation pointed out that a series of

failures, including a faulty computer system, are to be

blamed for the deaths. The main computer system failed

due to unknown reason. In addition, the backup computer

lagged in coming back on line, leaving a gap without any

protection for as much as 14 minutes. During the computer

glitch, a block valve south of Bellingham began to oscillate

and finally closed, building up pressure close to the pipe’s

design capacity inside the line. 

Non-software-related causes : 

The employees were not adequately trained by Olympic

Pipeline. Also, a broken pressure relief valve was not

identified during regular maintenances. 

Losses : Three fatalities. 

AA12: V-22 Osprey helicopter crash ( Berler ; Gross, 2004 ): 

Location and Date : Jacksonville, North Carolina, December

11, 20 0 0. 

Scenario : A V-22 had a flight control error, taking the lives

of all on board and resulting in the grounding of the Osprey

fleet. 

Software-related causes : 

The incident was found to be caused by a combination

of software anomaly and a hydraulic system failure. The

crashed aircraft experienced a leak in the hydraulic system

and the pilot pressed the system reset button several times

to compensate. However, investigators revealed a glitch in

the plane’s software that caused the plane to decelerate

with each press of the button, which made the accident

more likely. 
Losses : Four fatalities. 

AA13: Early releases of inmates in Washington State ( Berman,

2016 ; Kaste, 2016 ): 

Location and Date : Washington state, starting from 2002. 

Scenario : Since 2002, the Department of Corrections in

Washington state has given more than 30 0 0 inmates early

releases. The number could go as high as 3200. A computer

glitch is to blame for these early releases. 

Software-related causes : 

In 2002, the state Supreme Court ruling required the Depart-

ment of Corrections to apply good-behavior credits to the in-

mates’ sentences. However, a computer glitch existed in the

system which gave prisoners more credits than expected. 

Losses : Four fatalities. 

AA14: Deepwater horizon oil rig explosion ( Shafer and

Laplante, 2010 ): 

Location and Date : Gulf of Mexico, Louisiana, April 2010. 

Scenario : An explosion occurred on the Deepwater Horizon

oil rig operated by BP Petroleum and its subcontractor

Transocean. The explosion killed 11 workers, destroyed and

sank the rig, and caused millions of gallons of oil to pour

into the Gulf of Mexico, about 40 miles off of the Louisiana

coast. 

Software-related causes : 

At a government hearing into the disaster, the chief elec-

tronics technician testified that the drill monitoring and

control systems crashed several times and blue screens ap-

peared on the oil rig’s computer screens. With the systems

crashed, the driller could not have access to the crucial data

about what was going on in the well. 

Non-software-related causes : 

Other factors such as failed valves, dodgy cement, and

misinterpretation of pressure test also lead to the disaster. 

Losses : 11 fatalities and the largest environmental catastro-

phe in American history. 

.2. Accidents that did not involve the loss of life 

AB01: Ariane 5 ( Ariane 5; Ariane 501 Inquiry Board, 1996 ): 

Location and Date : Kourou, French Guiana, June 4, 1996. 

Scenario : The maiden flight of the Ariane 5 heavy-lift

rocket launcher lasted for only about 37 s before the rocket

departed its flight path and exploded. 

Software-related causes : 

At an altitude of about 3500 m, a conversion of a large 64-

bit floating point number to a 16-bit signed integer (a value

which could not be properly represented within this signal

range and was an unprotected condition causing a processor

halt) caused incorrect engine nozzle control deflection

signals to be sent to the Ariane 5 engines, inducing high

angle of attacks, large aerodynamic loads on the structure,

and eventual booster separation which caused the self-

destruction sequence to be triggered. The software design of

the Ariane 4 was reused nearly ‘as is’ in the Ariane 5. The

Ariane 5 boosters had more power than the earlier model

– additional thrust and vibrations contributed to the condi-

tions that led to the unhandled exception and processor halt.

Losses : $7 billion for ten years’ development and a cargo

valued at $500 million. 

AB02: Solar and Heliospheric Observatory (SOHO) ( SOHO

Mission Interruption Joint NASA/ESA Investigation Board, 

1998a , 1998b ; Solar and Heliospheric Observatory ; Weiss et

al., 2001 ): 



76 W.E. Wong et al. / The Journal of Systems and Software 133 (2017) 68–94 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

expected. 
Location and Date : Gulf of Mexico, Louisiana, June 25, 1998. 

Scenario : On December 2, 1995, the Solar and Heliospheric

Observatory (SOHO) was deployed from the Atlas IIAS

launch vehicle. The SOHO was the first ever mission to

study the outer layer of the Sun, solar wind, and interior

structure of the Sun. SOHO operated normally until May of

1998 when it was in its extended mission phase. On June

25, 1998, SOHO lost its lock on the Sun, which resulted in

the loss of contact of the spacecraft for nearly three months.

Software-related causes : 

On June 25, 1998, during the planned phase of calibration

and space reconfiguration, a pre-programmed command

sequence issued from the ground system which contained

a logic error caused one of the three gyroscopes to be

mistakenly left in the high gain setting. Additional actions

by the ground crew to diagnose and recover the satellite

initiated the chain of events that lead to the eventual loss

of attitude control and telemetry. 

Losses : Though the spacecraft continued to work after the

recovery, only one gyro remained operational. One month

later after the recovery, the last gyro failed on December

21, 1998. A lot of man powers were dedicated to the task of

developing a new gyroless operations mode for SOHO. 

AB03: Misplacement of Milstar satellite ( USAF Accident

Investigation Board ): 

Date : April 30, 1999. 

Scenario : The Milstar satellite was launched on April 1999

using the Titan IV (401) rocket to provide secure and

jam-resistant worldwide communications for the United

States Air Force. There were six satellites to be deployed

in geosynchronous orbits. However, only five of them were

successfully placed in orbit with one of them deployed in

a lower, non-operational orbit. The vehicle carrying the

failed satellite experienced unexpected rolls and then loss of

attitude control during its flight. The loss of attitude control

causes excessive thruster firing depleting on-board fuel; the

satellite was unable to be placed in the desired orbit. 

Software-related causes : 

An incorrect value of the roll-rate filter constant was as-

signed, which resulted in the unexpected rolls and loss of

attitude. 

Losses : The entire mission failed due to the misplacement

of the satellite. The cost is about $1.23 billion. In addition,

NASA had to face severe criticisms due to this mishap,

which was the third straight Titan IV failure. 

AB04: Mars Climate Orbiter ( Mars Climate Orbiter Official

website ; Mars Climate Orbiter Mission Failure Investigation

Board ): 

Location and Date : Space near Mars, September 23, 1999. 

Scenario : The Mars Climate Orbiter was one of the two NASA

spacecraft in the Mars Surveyor ’98 program. The robotic

space probe was launched on December 11, 1998 to study

the Martian climate, atmosphere, and surface changes. It

was also responsible for the communications relay for Mars

Polar Lander which was to be introduced later. However, on

September 23, 1999, communication with the Mars Climate

Orbiter was lost; it was determined that the vehicle arrived

too close to the planet and was likely destroyed by Martian

atmospheric stresses on the spacecraft or lost to space. 

Software-related causes : 

The navigation malfunction was due to an error in units

of measure within the software. Specifically, the software

on the ground station generated thrust instructions with

Imperial measures of pound-seconds (lb-s) while the Mars
Climate Orbiter was programmed to accept metric units

of newton-seconds (N-s); the subsequent navigation errors

and failure of the ground crew to recognize the recurrent

trajectory errors were due to software design error, placed

the spacecraft in an incorrect trajectory to safely reach

planetary orbit. 

Losses : The total loss is $85 million of which $80 million

was the spacecraft development and $5 million for mission

operations. 

AB05: Mars Polar Lander ( JPL Special Review Board March

20 0 0 ; NASA Science ): 

Location and Date : Surface of Mars, December 3, 1999. 

Scenario : The Mars Polar Lander (MPL) was the other one of

two NASA spacecraft in the Mars Surveyor ’98 program. The

Mars Surveyor ’98 Lander was launched on January 3, 1999

to study the soil and the climate of a region near the South

Pole on Mars. Due to a communication failure with the

Mars Climate Orbiter which has been described previously

above, the MPL used the Direct to Earth (DTE) technique to

communicate with NASA. However, on December 3, 1999,

during the descent phase of the Mars Polar Lander, the lan-

der lost communication with Earth and never reestablished

the communications link. 

Software-related causes : 

It was impossible to determine the exact cause of the

failure. The most probable cause of the MPL mishap was a

premature shutdown of the descent engines probably due

to software misinterpreting switch bounce during descent

after extension of the landing legs of the spacecraft. The

spacecraft would have computed a touchdown when in fact

it was still airborne. As a consequence, MPL crashed about

40 m above the surface and was presumed destroyed on

impact with the surface. 

Non-software-related causes : 

Other factors such as failed valves, dodgy cement, misin-

terpretation of pressure test also led to the disaster. Also,

budget and schedule pressure was also another cause for

the inadequate testing and other quality assurance activities.

Losses : The total cost was $120 million of which $110 million

was the spacecraft development and $10 million for mission

operations. 

AB06: Mars Global Surveyor ( Cain, 2006 ): 

Location and Date : Space near Mars, November 2, 2006. 

Scenario : The Mars Global Surveyor was launched in Novem-

ber 1996. It operated for ten years and provided global

mapping of the Martian surface, atmosphere, magnetic field,

and interior. Its mission was extended until communication

was lost with NASA on November 2, 2006. 

Software-related causes : 

The loss of contact was caused by a flaw in a parameter

update to the spacecraft’s system software. The spacecraft

held two identical copies of system software. However, two

different parameters were updated to those copies by two

independent operators. In order to correct the mistake,

another corrective update was performed. However, the up-

date command was written to the wrong memory address

which further induced the accident. 

Non-software-related causes : 

Lack of communications between the operators is another

cause of the incident. 

Losses : No remarkable loss could be identified, since the

spacecraft has been in working status much longer than



W.E. Wong et al. / The Journal of Systems and Software 133 (2017) 68–94 77 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AB07: 2015 Servile Airbus A400M Atlas Crash ( Servile Airbus

A400M Atlas crash , 2015, Hepher ): 

Location and Date : La Rinconada, Spain, May 9, 2015. 

Scenario : An Airbus A400M Atlas cargo plane crashed during

a test flight on May 9, 2015. The mishap was caused by a

“quality issue in the final assembly” of the aircraft engine. 

Software-related causes : 

Reuters ( Hepher ) reported that a file storing torque cali-

bration parameters for each engine was accidentally wiped

from three of the aircraft’s four Engine Control Units (ECU).

As a result, three of the four aircraft engines unexpectedly

shut down during the test flight leading directly to the loss

of aircraft. 

AB08: Chemical bank ATM failure ( Hansell, 1994 ; Reuter News

Service, 1994 ; Yates, 1994 ): 

Location and Date : New York, February 1994. 

Scenario : Chemical Bank offices around New York received

numerous phone calls about the double-posted withdrawals

which caused 15 million dollars to disappear from cus-

tomers’ accounts. The discrepancy was soon discovered and

all the money was returned to customers’ accounts. 

Software-related causes : 

Chemical Bank installed an updated computer program in

its data center. This update contained a programming error

that would process all withdrawals and transfers twice

when customers used an automated teller machine (ATM)

or made a purchase at retail stores. 

Losses : The direct monetary losses of Chemical Bank were

not revealed. However, efforts were made to fix and re-

turn the money to the accounts of customers. In addition,

customers might lose their confidence in the bank. 

AB09: AT&T network outage ( Burke, 1995 ; Elmer-Dewitt, 1990 ;

Peterson, 1991 ): 

Location and Date : New Jersey, January 15, 1990. 

Scenario : The AT&T operation center in New Jersey, had a

significant increase of warning signals that appeared across

its 72 video monitoring screens. Those screens displayed

operational information about AT&T’s worldwide telephone

switching network. Only about fifty percent of the placed

phone call made it through AT&Ts network. 

Software-related causes : 

After nine hours, AT&T technicians were able to identify the

root cause which was a single line of code (misplacement of

a BREAK statement) in the 4ESS operating software system

introduced by a software update aiming to improve the

network’s performance. 

Losses : AT&T alone lost from $60 to $75 million in uncon-

nected calls. 

AB10: AT&T SS7 Software patch failure ( Neumann, 1994 ;

Sterling, 1993 ): 

Location and Date : Washington, D.C., Los Angeles, San

Francisco, and Pittsburgh, July 1, 1991. 

Scenario : One and a half years after the AT&T Eastern USA

telephone system outage of January 1990, on July 1, 1991,

various metropolitan areas had serious outages of AT&T

telephone service. Computer-software collapses in telephone

switching stations disrupted service, and Washington, D.C.

(6.7 million lines), Los Angeles, San Francisco, and Pittsburgh

(1 million lines) were all affected for several hours. 

Software-related causes : 

These problems were eventually traced to a glitch in an

untested software upgrade. A single mistyped character in

the April software upgrade patch, a “6” instead of a “D” in a
single line of code, was blamed to be the main cause of the

accident. 

Losses : Overall twelve million people were left without

service. Although exact monetary losses are unknown,

many AT&T customers were disgruntled and might have

considered switching to other service providers. 

AB11: AT&T CRM upgrade problem ( Federal Communications

Commission, 2002 ; Koch, 2004 ; Cowley, 2003 ): 

Date : 2003. 

Scenario : AT&T made a software upgrade to its Customer

Relationship Management (CRM) system. The CRM software

deals with account management functions; for example,

tracking orders that were made and handling requests for

customer service plan changes. However, customer service

representatives were no longer able to create or have access

to customer relationship accounts. 

Software-related causes : 

Due to a glitch in the process arising from the different

interpretations of data standards between two manufactur-

ers (TSI and NeuStar), the interface bug caused the AT&T

CRM system to crash. Later, it was determined that schedule

pressure lead to insufficient testing of the software upgrade.

Losses : AT&T lost a significant number of potential new

customers. 

AB12: DART mishap ( Croomes, 2006 ): 

Location and Date : Space, April 15, 2005. 

Scenario : The Demonstration of Autonomous Rendezvous

Technology (DART) satellite was expected to rendezvous

with and perform various maneuvers near the orbit-

ing Multiple Paths, Beyond-Line-of-Sight Communica- 

tions (MUBLCOM) satellite, and do these maneuvers

autonomously. Part way through the mission, the DART

satellite began using an excessive amount of propellant and

depleted the on-board propellant supply earlier than ex-

pected. The DART satellite then collided with the MUBLCOM

satellite. As a consequence, the DART satellite retired prema-

turely and initiated its preprogrammed departure without

completing its main mission objectives. 

Software-related causes : 

The root cause of the propellant loss was the incorrect

velocity measurement from the primary GPS receiver which

was incorrect by about 1.9 feet per second. This previously

known bug resided in the software but the fix was never

implemented in the final code loaded onto the spacecraft.

Also, an additional feature in the computational logic known

as “gain” was set at an appropriate level which caused the

logic to trust the computed values more than it reasonably

should. 

Non-software-related causes : 

The project was selected as a high-risk, low-budget tech-

nology demonstration under NASA Research Announcement 

(NRA), in which case detailed design decisions about how

to meet the requirements were left to the contractors. 

Losses : More than $1 million. 

AB13: Loss of voice communication between FAA Air Traffic

Control Center and airplanes ( Geppert, 2004 ; Los Angeles

Times, 2004 ): 

Location and Date : Los Angeles International Airport,

September 14, 2004. 

Scenario : The Los Angeles International Airport and other

airports in that region experienced suspended air traffic

control operations due to a failure of an FAA radio system

located in Palmdale, California. Field technicians failed to



78 W.E. Wong et al. / The Journal of Systems and Software 133 (2017) 68–94 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

perform the required reboot of this radio system which was

needed every 30 days – this resulted in the shutdown of

radio system without warning. 

Software-related causes : 

Though the FAA attributed the accident solely to human

error, there was a design error that made the manual reboot

necessary in the first place. Following this incident, the ra-

dio was replaced with the upgraded unit which eliminated

this design error. 

AB14: Shutdown of the Hartsfield-Jackson Atlanta Inter-

national Airport ( Hartsfield-Jackson Atlanta International

Airport ; Schneier, 2006 ): 

Location and Date : Hartsfield-Jackson Atlanta International

Airport, April 19, 2006. 

Scenario : An employee of TSA identified the image of a

suspicious device which was likely to be a bomb but did

not realize it was part of the routine testing for security

screeners. To ensure the security of the airport, the screener

and his supervisor manually rechecked all the bags on

the conveyor belt but failed to find anything resembling

what was on the screen. Due to this, the airport decided to

evacuate the security area for two hours. 

Software-related causes : 

Though it can be interpreted as a human error, the lack of

a warning message was also indicated as the cause of the

mishap. 

Losses : Delay of more than 120 flights. 

AB15: London tube closure ( Thurston, 2006 ): 

Location and Date : London, UK, November 2006. 

Scenario : In November 2006, the installation of new software

caused the widespread delay to the London Underground.

The new computer software with the revised timetable

information broke down the system when it started. 

Software-related causes : 

Though it can be interpreted as a human error, the lack of

a warning message was also indicated as the cause of the

mishap. 

AB16: Cancellation of London Stock’s Taurus project ( Bacon,

2013 ; London Stock Exchange, 2012 ; TAURUS ): 

Location and Date : London, UK, Early 1993. 

Scenario : Taurus, which stands for Transfer and Automated

Registration of Uncertificated Stock, was an ambitious effort

aiming to turn stock trading into a paperless transaction

system. However, in the early 1993, the London Stock Ex-

change (LSE) announced cancelation of this project because

Taurus was eleven years late and 13,200% over the budget

with no concrete solutions. 

Software-related causes : 

The main cause was the use of Vista Software for database

management which could not handle batch processing.

LSE tried to rewrite almost 60% of the Vista Software

for database management to deal with Vista’s inability

to handle batch processing. This development introduced

numerous hidden bugs and long project delays. 

Non-Software-related causes : 

Other factors can also be considered as causes attributing

to the failure. The risk assessment for the project failed to

acknowledge the failure and did not cancel the project at

the very first moment. The design of the project was ques-

tionable due to its complexity and lack of well-organized

requirements. 

Losses : Taurus stock settlement system canceled after $600
million is spent. 
AB17: Outages in Tokyo Stock Exchange ( Brooke, 2006 ;

Leyden, 2005 ; Tokyo Stock Exchange ): 

Location and Date : Tokyo, Japan, November 1, 2006. 

Scenario : The outage of the Tokyo Stock Exchange took place

on November 1, 2006. Due to the unexpected outage, the

exchange operations were delayed for three hours. 

Software-related causes : 

This outage was caused by bugs in the newly installed

transaction system software developed by Fujitsu. The

system was designed to handle higher trading volumes

than the previous system. Flawed instructions from Fujitsu

updating the system caused the entire outage of Tokyo Stock

Exchange. 

Losses : Exchange operations were delayed for three hours. 

AB18: Money loss at Tokyo Stock Exchange ( Typing Error

Causes $225 M Loss at Tokyo Stock Exchange, 2005 ): 

Location and Date : Tokyo, Japan, December 8, 2005. 

Scenario : Mizuho Securities Co. lost at least 27 billion yen

(approximately $225 million) on a stock trade. The trouble

began with a typing error by a trader. Instead of selling one

share at 610,0 0 0 yen ($5041), the trader sold 610,0 0 0 shares

at one yen (less than a penny). Two minutes later, the trader

discovered the error and tried to revoke the trade. However,

after three failed attempts, the trade could not be revoked. 

Software-related causes : 

Investigations indicated that the software system suffered

from a glitch that under certain circumstances traders could

not cancel trades. The bug was introduced in an update of

the system; regression testing may have discovered the bug.

Unfortunately, regression testing has never been performed

adequately. 

Losses : A loss of $225 million. 

AB19: Toronto Stock Exchange failure ( Modine, 2008 ): 

Location and Date : Tokyo, Japan, December 18, 2008. 

Scenario : Toronto Stock Exchange (TSX) shut down 18 min

after opening and continued to remain un-operational for

the entire day. The failure that caused the shutdown was

discovered — only part of the users were receiving data

about trading activities. 

Software-related causes : 

Although specific details were not given, the company stated

that the failure was due to a “network firmware issue”

which “resulted in complications with data sequencing”. This

indicates that the software may have been poorly integrated

with the networking infrastructure or inadequately tested. 

Losses : TSX shut down 18 min after opening and remain

un-operational for the entire day. 

AB20: Standards & Poor’s erroneous alert message on

France’s credit rate ( Charette, 2011 ; Neumann and Lamar,

2011 ): 

Date : November 10, 2011. 

Scenario : The rating company Standards & Poor’s (S&P) sent

out an erroneous alert message to subscribers that the

company had downgraded France’s triple-A credit rating.

It took nearly two hours before S&P sent out another note

stating that the alert was in fact a “technical error”. 

Software-related causes : 

Following the publication by S&P of a review of all of its

Banking Industry Country Risk Assessment (BICRA) rankings,

the BICRA ranking for France was changed to “N/A” (not

available) on the Global Credit Portal page. The system

mistakenly interpreted this change as a “downgrade” and
triggered the erroneous message sent to subscribers. 



W.E. Wong et al. / The Journal of Systems and Software 133 (2017) 68–94 79 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AB21: Security flaws in medical devices ( Greenberg, 2014 ;

Storm, 2014 ): 

Date : October 22, 2014. 

Scenario : Reuters reported that the Department of Homeland

Security (DHS) was investigating 24 cases of suspected cy-

bersecurity flaws in medical devices and hospital equipment.

Software-related causes : 

DHS was concerned that these devices might be controlled

remotely and become the cause of severe issues, such as

instructing an infusion pump to overdose or forcing a heart

implant to deliver a deadly jolt of electricity. 

AB22: Emergency shutdown of the Hatch Nuclear Power

Plant ( Edwin I. Hatch Nuclear Power Plant ; Krebs, 2008 ): 

Date : March 7, 2008. 

Scenario : The Edwin I. Hatch Nuclear Power Plant was forced

into an emergency shutdown for 48 hours. The accident oc-

curred at Unit 2 started after a software update was applied

to a computer operating the plant’s business network. 

Software-related causes : 

The computer which caused the shutdown was used to

monitor chemical and diagnostic data from one of the

facility’s primary control systems. The update was intended

to synchronize data on both the business and the control

system. After the update was patched, the updated com-

puter rebooted and reset the data on the control system,

causing the safety systems to errantly interpret the lack of

data as the sign of a drop in water reservoirs. To ensure

the safety of the nuclear plant, automated safety systems

triggered the shutdown. 

Losses : A total loss of $5 million 

AB23: Power outage across the Northeastern U.S. and South-

eastern Canada ( Jacobs, 2013 ; Northeast Blackout of 2003 ): 

Location and Date : Parts of the Northeastern and Midwestern

United States and Ontario, Canada, August 14, 2003. 

Scenario : parts of the Northeastern United States and South-

eastern Canada experienced widespread power blackouts

after 4:10 p.m. EDT. Some power supply was restored by 11

p.m. But some places did not get their power back until two

days later. The time for restoration for some remote areas

even tripled. 

Software-related causes : 

A software bug known as a race condition existed in the

energy management system. The bug was triggered at a

control room of the FirstEnergy Corporation, located in Ohio.

The bug crashed the control room’s alarm system for over

an hour. During this time, operators were unaware of the

need to redistribute the power supply in order to remain

balanced loads. Therefore, a manageable local blackout

cascaded into massive distress on the electric grid. 

Non-software-related causes : 

The overloaded transmission lines at a generating plant in

Eastlake, Ohio, came in contact with overgrown trees. There-

fore, these lines went out of service and their loads tripped

to other transmission lines. However, other lines were not

able to bear the loads and started tripping their relays. Once

multiple trips occurred, some generators lost part of their

loads and tripped out of the grip to prevent further damage.

Losses : The blackout affected more than 50 million people

and cost a total of about $13 billion. 

AB24: Nissan Leaf Software Glitch ( Nissan Leaf recalled for

software glitch, 2011 ; O’ Dell, 2011 ): 

Date : 2011. 

Scenario : The Nissan Leaf owners suffered from the “failure

to start” issue in 2011. When the air conditioning in the
vehicle was activated, the increased demand in power

triggered a high voltage alert. When this alert was present,

a user could continue driving, but once the car was turned

off, it would not start again. 

Software-related causes : 

An incorrectly programmed control software and a hyper-

sensitive sensor were to blame for the issue. After iden-

tifying the issue, Nissan ceased delivery of newly ordered

vehicles. Additionally, they sent engineers to individual

dealerships of the affected cars to manually reprogram the

control software while the company worked to develop a

“solution package”. 

Losses : Man powers to reprogram the control software. 

AB25: Failure of Windows Genuine Advantage ( Lake, 2010 ;

Microsoft ; MSDNArchive, 2007 ): 

Date : August 24, 2007. 

Scenario : Windows Genuine Advantage is a program by

Windows that determines whether your copy of Windows

is a legitimate copy. Due to a human error in August 2007,

thousands of people who had legitimate copies of Windows

were accused of having a pirated copy. 

Software-related causes : 

The incident was caused by the mistakenly sent pre-

production code to production servers. The production

servers had not yet been upgraded with a recent change

to enable stronger encryption/decryption of product keys

during the activation and validation processes. As a result,

activation and validation requests from genuine windows

systems were declined by the production servers. Though

Microsoft repeatedly emphasized that the incident was due

to “nothing more than human error”, it is worth noting

that no appropriate warning or reminder in the process of

sending code to the production servers. After the incident,

Microsoft added checkpoints before changes can be made to

production servers. 

Losses : Reputation of Windows damaged due to the increas-

ing dislike of their anti-piracy tool. 

AB26: Failure of Oxford Health Plan’s Bill and Claim system

( Freudenheim, 1997 ; Hammonds, 1997 ; The Harder They

Fall, 1997 ): 

Date : 1996. 

Scenario : Oxford Health Plans Inc. introduced a new billing

and claim system on September 1996 in order to deal

with the expected increase in annual enrollments to the

plan. However, the system was faulty and misled Oxford

into overestimating the revenues and membership while

underestimating the cost that they have to pay the doctors

and hospitals. 

Software-related causes : 

The system could not handle data with any error. For

example, once the system detected a single mistake in a

10 0 0-member account, it kicked out the entire group. 

Non-software-related causes : 

Little efforts were spent on the testing of the new system,

which resulted in the system to be inadequately tested. Also,

Oxford tried to transit too many customers by one operation

under the condition that no backup plan was available. 

Losses : Some customers canceled their policies, which cost

Oxford $42 million. In addition, problem with incorrect esti-

mates for Medicare patients and the advance payments that

Oxford paid out led to another $51.9 million loss for Oxford.

AB27: Security flaw in Maximo Heart Monitor ( Feder, 2008 ;

Hacking the Human Heart, 2010 ): 



80 W.E. Wong et al. / The Journal of Systems and Software 133 (2017) 68–94 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Date : 2008. 

Scenario : In 2008, a team of researchers from the University

of Washington and the University of Massachusetts ded-

icated a great amount of time and $30,0 0 0 worth of lab

equipment to investigate the security of the Maximo heart

monitor and other medical devices. 

Software-related causes : 

They concluded that not enough attention was being given

to the security process when creating such medical systems

and the result could impose potential danger on users. 

AB28: Cancellation of mission by U.S. Air Force F-22 raptors

( Hill, 2007 ; Johnson, 2007 ; Wastnage, 2007 ): 

Date : February 2007. 

Scenario : In February 2007, the U.S. Air Force’s F-22 Raptor,

one of the leading fighter jets in the world, faced computer

systems failure flying from Hawaii to Kadena Air Base in

Japan. When the aircraft crossed the International Date

Line (IDL), multiple computer systems such as fuel system,

navigation system, and part of communication system went

offline and failed on board. The crew attempted numerous

times to reboot the system without success. The aircraft

returned to Hawaii. If weather condition were bad or the

F-22 Raptors were separated from the refueling tankers

that guided them back to safety, they may have gotten into

serious trouble. 

Software-related causes : 

Though the details of the bug were not publicly revealed,

Air Force Major General Don Shepperd stated that “it was a

computer glitch in the millions of lines of code, somebody

made an error in a couple lines of the code”. 

Losses : The mission was canceled and Air Force lost 48 h of

time and work hours for engineers to fix the code that was

flawed. 

AB29: Intel Pentium FDIV Bug ( Janeba, 1995 ; Price, 1995 ): 

Date : August 24, 2007. 

Scenario : Intel’s Pentium microprocessor chip made in 1994

contained a floating-point unit (FPU), also called a math

coprocessor that contains the instructions to divide floating-

point numbers. These instructions made the chips much

faster for complex numerical calculation. However, the Pen-

tium chips had errors on their FPU instructions for division,

which led to incorrect outputs for specific floating-point

numbers. 

Software-related causes : 

The root cause was the omission of five entries out of about

a thousand values in a stored table needed by the built-in

floating-point unit. 

AB30: USS Yorktown carrier shutdown ( Slabodkin, 1998 ): 

Location and Date : Coast of Cape Charles, VA, September

1997. 

Scenario : The Yorktown Smart Ship lost control of its

propulsion system when bad data was fed into its com-

puters during maneuvers off the coast of Cape Charles, Va.

Although the USS Yorktown had been considered a success

in reducing manpower, maintenance, and costs, an incident

where the ship was dead in the water for hours has taught

a lesson to the US Navy. 

Software-related causes : 

The “divide by zero” overflow that caused the system failure

did not happen in actual combat, but this engineering local

area network casualty generated a debate about possible

solutions to prevent similar failures from happening in the

future. 
Loss : Engineers’ effort s and work hours to fix the bug. 
AB31: GPS dark up ( Associated Press, 2010 ; Elliott, 2010 ): 

Date : January 11, 2010. 

Scenario : As many as 10,0 0 0 U.S. military GPS receivers were

affected and were useless for at least two weeks. 

Software-related causes : 

Air Force inspectors discovered a glitch in the patch aiming

to update the ground control stations that rendered dark

the graphics of up to 10,0 0 0 GPS receivers for at least

two weeks. The Air force acknowledged that no tests were

performed on those receivers being affected. As a result, the

Air Force started to require more tests on GPS receivers for

a broader sample of military and civilian models. 

Loss : Engineers’ effort s and work hours to fix the bug. 

AB32: FoxMeyer ERP System failure ( Fox-Meyer Drugs, 2012 ;

Scott, 1999 ): 

Date : August, 1996. 

Scenario : In August of 1996, FoxMeyer, once was a drug

company with annual sales of about five billion US dollar,

filed for bankruptcy, and was sold to a competitor for only

80 million soon after. Four years’ prior, the corporation

chose to make a large investment in an Enterprise Resource

Planning (ERP) system in order to provide efficient distri-

bution of prescription drugs. Despite high hopes for the

ERP project, it turned out to be a complete failure. The

system had significant data errors and couldn’t handle the

drug distribution correctly. In addition, the project was way

behind the schedule and over the budget. 

Software-related causes : 

Both poor planning and lack of performance contributed to

the failure of the software’s integration and resultant mone-

tary loss that FoxMeyer suffered. The software package SAP

R/3 was originally designed for manufacturing companies

instead of wholesalers, which lacked in the ability to fulfill

the need for product distribution. 

Non-Software-related causes : 

FoxMeyer failed to allow sufficient time for the implemen-

tation and testing. In addition, no end user was involved

in the project planning and employees had no chance to

express their business needs. 

Loss : A loss of $65 million invested in the project; The

company went bankrupt soon after. 

AB33: Nike’s supply-chain software failure ( Bousquin, 2001 ): 

Date : August, 1996. 

Scenario : Nike hired i2, a supply-chain software vendor, to

create a system that would predict the demand of their

products. The project was started in June 20 0 0 and Nike in-

tended to make use of the supply-chain software in order to

better plan and control the production of existing products.

However, the supply-chain software did not reach the ex-

pectations of Nike in performance nor functionality. Though

designed to aid in speedily forecasting market changes, the

system from i2 suggested producing too many shoe styles

that were declining in popularity and too little popular

models. The defective software system led to significant lost

in sales and decreased stock prices. 

Software-related causes : 

The demand prediction application was poorly integrated

with the supply chain planner. The two applications used

unique business rules and data formats. Operators even had

to download the data from the demand prediction appli-

cation and manually reload the data into the supply chain

planner. Second, i2 constantly stated that the major cause

of the failure was the over-customization of their products,

which was entirely due to the fact that Nike refused to

follow the implementation methodology provided by i2. 



W.E. Wong et al. / The Journal of Systems and Software 133 (2017) 68–94 81 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Non-software-related causes : 

Such a complex system was not adequately tested and went

live just one year after launching the project. An analyst at

Credit Suisse First Boston stated that because of the com-

plexity of the project, “he would not have been surprised if

to test the system for three years while keeping the older

system running.”

Loss : Nike lost $100 million in lost sales, on top of the $40

million cost of the project. Profit per share was 35 to 40

cents, which was a significant decline from their previous

50 to 55 cents per share. 

AB34: Hershey Foods Corporation ERP implementation 

failure ( Gilmore, 20 09 ; Koch, 20 02 ): 

Date : August, 1996. 

Scenario : Hershey Foods Corporation decided to replace

its legacy management system with the new Enterprise

Resource Planning (ERP) software. SAP AG’s R/3 ERP suite

along with companion software from Manugistics and Siebel

were chosen. IBM Global Services was responsible for the

integration of the software provided by the three different

vendors. However, some of the modules were delayed and

were implemented three months later than expected. This

delay caused the late shipment of several consignments and

incomplete deliveries. 

Software-related causes : 

Poor project management and communication were the root

cause of the failure. First of all, the lack of communication

between technical personnel and on-site operators caused

the consequence that ERP system could not identify specific

storage locations. Since Hershey occasionally store products

in rented temporary spaces and unused rooms in the fac-

tories, these locations were not taken into account by the

new system and therefore the products stored there were

not listed as available for distribution. 

In addition, Hershey ignored the recommended 48-month

implementation time and insisted the 30-month turnaround.

The limited implementation time resulted in the lack of

adequate testing of the system. Moreover, Hershey tore

down its old logistics system to make way for the new one,

which resulted in the lack of backup plan when something

went wrong. 

Non-software-related causes : 

The employees were inadequately trained on how to use the

new software. The transfer took place during peak season

and little time were spared for the endeavors. 

Loss : Annual revenues for 1999 were $150 million less

than that for 1998. In addition, the stock price of Hershey

dropped 8%. 

AB35: Hewlett Packard ERP system migration failure

( Wailgum, 2009 ): 

Date : May 2004. 

Scenario : In May 2004, Hewlett Packard Corp. began migrat-

ing one of its largest divisions to a centralized Enterprise

Resource Planning (ERP) system manufactured by SAP AG.

However, due to a series of “small problems”, the migration

turned out to be a failure. 20 percent of customer orders

for HP servers stopped in their tracks due to data modeling

issues between the legacy system and the SAP system. The

data models of the two systems differed from each other

which resulted in the consequence that the SAP system was

not able to process some orders for customized products. 

Software-related causes : 

The root cause for the failure was the problems regarding

data integrity and interface. Data from the legacy system
was rejected by the SAP system, which required a lot of

manual intervention. 

Non-software-related causes : 

Lack of adequate testing played an essential role in the

failure due to aggressive planning of the project. In addi-

tion, the communications among the teams developing the

system were also blamed as another cause of the failure. 

Loss : The project alone cost HP $160 million in order back-

logs and lost revenue. In addition, HP’s servers and storage

group had a $400 million revenue decrease, which was

partially blamed on the failure. 

AB36: Cancellation of Avis PeopleSoft ERP system ( Best,

2004 ): 

Date : 2004. 

Scenario : In 2004, car rental firm Avis Europe announced

the termination of its new ERP system due to “substantial

delays and consequently higher cost due to a number of

problems with design and implementation”. 

Software-related causes : 

A large number of problems existed in the system which

were due to the design and implementation. 

Non-software-related causes : 

Poor project planning and management was the root cause

for the failure. 

Loss : A loss of $54.5 million. 

AB37: Prius software Glitch ( Kanellos, 2005 ): 

Date : 2004 and 2005. 

Scenario : the 2004 and 2005 Priuses can make a warning

light on without any cause. In addition, the gas engine

might be shut down altogether. As stated in ( Kanellos,

2005 ), 68 incidents have been reported to the National

Highway Traffic Safety Administration. 

Software-related causes : 

Though the detailed causes for the incidents were not pub-

licly revealed by Toyota, it is reasonable to conclude that the

incidents were due to computer glitches since mechanics

need to re-program the electronic control module when

owners brought their cars back. 

Loss : The incidents caused significant reputation loss of

Toyota Prius, especially in a stage that customers were still

not convinced of the reliability of these new electronic

vehicles. Man powers were also required to solve the issue. 

AB38: CIGNA’s CRM system data migration failure ( Bass,

2003 ): 

Date : January 2002. 

Scenario : In January 2002, CIGNA HealthCare Corporation

experienced a “near disaster” while migrating its members

to its new claims processing and customer service process-

ing systems. Due to technical “glitches”, many customers

were unable to obtain health coverage or receive correct

quote. Customer service representatives weren’t capable of

providing appropriate assistance. 

Software-related causes : 

The root cause for the incident was the system’s inability

of dealing with large numbers of account migration at the

same time. Before the mass migration, CIGNA tested the

functionality by migrating relatively small groups (10 to

15,0 0 0) of user accounts. Encouraged by the early suc-

cess, CIGNA migrated 3.5 million customers in one batch.

Unfortunately, the attempt failed completely. 

Non-software-related causes : 

The pressure from CIGNA had an impact on the overall

quality of the system as well as the testing process. 



82 W.E. Wong et al. / The Journal of Systems and Software 133 (2017) 68–94 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

s  

d  

n  

w  

c  

d  

(

Loss : The CRM system was successfully launched after the

issues fixed. However, company membership fell from 13.3

million to 12.5 million which was directly related to these

customer service problems. In addition, its stock fell 40

percent after the failure. 

AB39: Enron payouts to employees stalled ( Hays, 2007 ): 

Date : 2007. 

Scenario : In 2007, more than 20,000 former Enron employ-

ees were told that they were either overpaid or underpaid

because of a math error. Due to the faulty computer soft-

ware used to calculate allocations, 7700 people received too

much money while 12,800 didn’t receive enough. 

Software-related causes : 

The accident has been attributed to a computer glitch in the

software calculating the payouts. 

Loss : The amount of overpayment that couldn’t be recovered

amounted to $9.15 million, or $11.2 million with interest. 

AB40: Atlanta water bill spike ( Zamost and Phillips, 2011 ): 

Location and Date : Atlanta, Georgia, 2007 to 2009. 

Scenario : From 2007 to 2009, the city of Atlanta experienced

a problem with its customer water usage and billing. For ex-

ample, bills of $150 to $250 skyrocketed to $10 0 0 to $1200. 

Software-related causes : 

When the water meters reached 450, the software started

to miscalculate customer usage leading to the overcharges. 

Loss : The city faced countless lawsuits and meetings with

city officials complaining the situation. Altogether $466,368

credits were issued to residents. In addition, there was a

loss of trust between the city and the residents. 

AB41: McDonalds’ Innovate project failure ( Gallagher and

Barrett, 2003 ): 

Date : 2007 to 2009. 

Scenario : McDonalds’ Innovate Project was one of the most

expensive and extensive information technology projects.

The project’s goal was to establish a real-time global

network to link over 30,0 0 0 stores worldwide to their

headquarters by using the Intranet. However, McDonalds’

canceled the project whose costs reached $170 million. 

Non-software-related causes : 

Failure of the project was mainly due to the bad man-

agement during the entire process of development. Lack

of communications and insufficient leadership have been

identified as the two major causes. In addition, lack of ade-

quate testing also played a role in the failure. Furthermore,

the project was pushed too hard, which resulted in the

consequence that the multiple phases project went live in a

short period of time. 

Loss : A loss of $170 million. 

AB42: Sydney Water’s CIBS project failure ( Krigsman, 2007 ): 

Date : 2007 to 2009. 

Scenario : Sydney Water pursued litigation against Price-

waterhouseCoopers over the failed Customer Information

Billing System (CIBS) project. Sydney Water stopped the

CIBS project following lengthy delays and cost overruns 

Software-related causes : 

The failure was attributed to the poor management and

governance from Sydney Water. 

Loss : The failed project cost more than $135 million. 

AB43: Confirm project failure ( Bacon, 2013 ; Confirm Project ):

Date : 1992. 

Scenario : The CONFIRM system was a very ambitious project

which aimed to create a global distribution system used
by airline, rental car, and hotels. In 1988, AMR, Marriott,

Hilton Hotels Corp., and Budget Rent-A-Car made contracts

to complete the system at an expected cost of $55 mil-

lion. However, the system never went live as the project

turned out to be much more complex than the partners

had expected. In April 1992, CONFIRM failed tests at Los

Angeles-based Hilton, just three months before the system

was intended to go live. 

Software-related causes : 

The main cause of the failure was the difficulties of dealing

with the interfaces between two mainframes. The system

required application-to-application communication channels

between the two mainframes for nearly 60 applications.

However, the users found that the system’s user interface,

transaction processing application, and the database did not

communicate effectively with one another. In addition, data

in the databases was difficult to recover in the event of

crashes. 

Loss : After three and a half years and $125 million, the

CONFIRM project was canceled. 

AB44: Trips reservation system failure ( Tomsho, 1994 ): 

Date : 1993, 1994. 

Scenario : In 1993, Greyhound Bus Lines implemented a

complex software system called “Trips” to help with bus

reservations, ticketing, and the arrangement of buses and

drivers. However, after Trips was launched in the summer

of 1993, there were immediately problems such as repeat-

edly system crashes and doubled ticketing time. Again in

1994, the system went down again during an urgent bid to

increase ridership. Buses and drivers were in short supply

in many cities which resulted in some terminals swamped

with frustrated passengers that could not get on the bus. 

Software-related causes : 

The complexity of the Trips system was the root cause for

the crash in 1993. Also, lack of load testing played important

roles in both two failures. What’s more, the system was too

quickly to go live, though it was recommended to be ready

in several phases. 

Loss : A revenue loss of $61 million. 

AB45: FAA’s advanced automation system failure ( Cone,

2002 ): 

Date : 1994. 

Scenario : The Advanced Automation System (AAS) was in-

tended to provide a complete overhaul of the nation’s major

air traffic control computer systems. However, the project

failed after $1.5 billion of hardware and software turned out

to be useless. 

Software-related causes : 

The software project was way too complicated. 

Non-software-related causes : 

Under estimation of the resources required, and poor

management can also be identified as causes. 

Loss : A loss of $1.5 billion. 

. Losses 

The loss affected by an accident is often correlated to its

everity. This section describes the various kinds of losses incurred

ue to these accidents. The losses have been classified as fatal and

on-fatal. Table 4 lists all the fatal accidents involved in our study,

hich helps to understand the combined impact of failed software

ritical system on humans. Non-fatal losses, listed in Table 5 ,

escribe accidents involving loss of money, time, or reputation

good-will). 



W.E. Wong et al. / The Journal of Systems and Software 133 (2017) 68–94 83 

Table 4 

Losses of notable fatal software failures included in our study. 

Year Accident Fatalities 

1985–87 Therac-25 Accidents ∗ Not clear 

1991 Patriot Missile Failure 28 

1992 London Ambulance Service 30 

1993 Lufthansa Flight 2904 2 

1994 China Airlines Flight 140 264 

1995 American Airlines Flight 965 159 

1997 Korean Air Flight 801 228 

1999 Olympic Pipeline Explosion 3 

20 0 0 V-22 Osprey Helicopter Crash 4 

2002 Early Releases of Prisoners in Washington 4 

2008 Spanair Flight 5022 154 

2010 Deepwater Horizon Oil Rig Explosion 11 

2014 Misdiagnosis of Ebola Patient 1 

20 0 0–01 Miscalculated Radiation Doses at the National Oncology Institute, Panama 18 

∗ Number of fatalities is not clear based on several reports, including the most widely cited one by 

Leveson and Turner, 1993 

 

h  

t  

b  

B  

a  

i

5

 

t  

t  

a  

c  

t  

v  

s  

c

5

 

a  

t  

s

5

 

t  

s  

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

q  

m  

o  

w  

l  

l  

v

 

 

 

 

 

 

 

 

 

 

 

 

Special notice should be given to the security flaws in Maximo

eart monitors. Even though research of the Maximo heart moni-

or indicated that up until that point, no fatalities had been caused

y hackers, the project concluded that it was entirely possible.

y creating a device with little security, medical companies were

llowing potential access to a patient’s lifeline - possibly resulting

n death. 

. Causes 

Accident causes help one understand the underlying events

hat must be prevented to avoid the mishaps in the future under

he same conditions. This section examines some causes of the

ccidents presented in this paper. We have classified the accident

auses by ‘software-related’ and ‘non-software-related’ in order

o distinguish between the technical and non-technical factors in-

olved in the mishap. Also included are short descriptions of why

ome of the representative cases are caused by the corresponding

ause. 

.1. Contributing factors: software related 

Software related factors describe the role of software in an

ccident and the causes of failures. These causes include faults in

he software, improper design of the system/software, and other

oftware related issues that caused the accident. 

.1.1. C01: Faulty value computation 

Although this kind of error has been reduced dramatically due

o modern tools that perform more testing and validation of the

ystem, it should still be considered one of the major causes of

ccidents. 

1. AB01 was one such accident in which an operand fault oc-

curred while converting a 64-bit floating point Horizontal Bias

(HB) value to a 16-bit signed integer. The Système de Référence

Inertielle or Inertial Reference System (SRI) computed the faulty

value just before ignition on the platform and the On-Board

Computer (OBC) computed an error output, which altered the

nozzle direction drastically and led to the flight departure and

eventual self-destruction of the rocket. 

2. Similarly, AB03 also occurred due to feeding of the wrong roll

rate filter constant to the software file in the Inertial Measure-

ment System. The incorrect value caused the launch vehicle to

move unexpectedly, burning more fuel than expected. As a re-

sult, the Milstar Satellite was placed in a lower, unusable orbit. 

3. In AB04, the Mars Climate Orbiter lost communication with

Earth due to a faulty value computed by the development
team. The crew used Imperial measurement terms to calculate

the minimum altitude at which the spacecraft should orbit

around Mars and came up with a value of 110 pound-seconds.

However, the spacecraft system software was designed to take

instruction in terms of Newtons-seconds, the metric unit of

force. As a result, the spacecraft computer calculated an incor-

rect value which directed the spacecraft to a lower altitude in

the Martian atmosphere destroying the spacecraft. 

4. In AB12, the measured velocity from the primary GPS receiver

was offset about 0.6 m per second. Whenever the estimated

and measured positions diverged beyond acceptable limits,

the software would reset and replace the estimated position

and speed with the measurements from the primary GPS

receiver. Since the primary GPS receiver measurements were

not accurate, the estimated and measured positions would

eventually diverge and trigger another reset. This problem led

to an excessive use of the thrusters and early depletion of fuel. 

5. In AB30, the ship lost control of its propulsion system because

its computers were unable to divide by zero. The Yorktown’s

Standard Monitoring Control System administrator entered zero

into the data field for the Remote Data Base Manager program,

causing the database to overflow and crash the LAN consoles

and remote terminal units. 

.1.2. C02: Security 

Security has long been recognized as a key aspect of software

uality; this has become more important as software is becoming

ore ubiquitous. However, either failures to fulfill requirements

r omissions of requirements can lead to security vulnerabilities

hich result in severe consequences, such as threats to human

ife, loss of significant amounts of assets or resources, and/or

oss of reputation. Below are several examples related to security

ulnerabilities: 

1. Security flaws in AB27 were the result of poor design. Com-

panies put little effort in security because potential “hacking”

did not seem like a relevant issue; research conducted in 2008,

however, indicated otherwise. A heart monitor, which admin-

isters levels of either electric shock could be intercepted by an

outside party when connected to the Internet. This potential

attack would be almost indistinguishable from the patients’

poor pre-existing conditions. In other words, the deaths that

could be triggered would look like standard cases of diabetic

coma or cardiac arrest; however, they would actually have

been triggered by a breach in the device’s security and loss of

device control. 

2. In AB21, Security flaws in the 24 medical devices investigated

by Department of Homeland Security (DHS) could be utilized



8
4
 

W
.E

.
 W

o
n

g
 et

 a
l.
 /
 T

h
e
 Jo

u
rn

a
l
 o

f
 Sy

stem
s
 a

n
d
 So

ftw
a

re
 13

3
 (2

0
17

)
 6

8
–

9
4
 

Table 5 

Losses of notable non-fatal software failures included in our study. 

Year Accident Outcomes Losses 

1990 AT&T Network Outage AT&T alone lost from $60 to $75 million in unconnected calls. $60–$75 million 

1991 AT&T SS7 Software Patch Failure 12 million people in various metropolitan areas had serious outages of telephone service. 

1992 Confirm Project Failure A loss of $165 million. $165 million 

1993 Trips Reservation System Failure A revenue loss of $61 million. $61 million 

1993 Cancellation of London Stock’s Taurus Project Taurus stock settlement system canceled after $600 million is spent. $600 million 

1994 Intel Pentium FDIV Bug Intel’s customers lost trust in Intel due to this incident. 

1994 Chemical Bank ATM Failure $15 million dollar lost from customers’ accounts. 

1996 Ariane 5 A decade of development cost of $7 billion and a cargo with a value of $500 million. $7 billion and a cargo with a value of 

$500 million 

1996 FoxMeyer Enterprise Resource Planning System Failure A loss of $65 million invested in the project; The company went bankrupt soon after. $65 million 

1997 Failure of Oxford Health Plan’s Bill and Claim System A loss of $3.4 billion in corporate value. $3.4 billion in corporate value 

1997 USS Yorktown Carrier Shutdown Engineers’ effort s and work hours to fix the bug. 

1998 Solar and Heliospheric Observatory (SOHO) The Spacecraft’s entire value of $1 billion. $1 billion 

1999 Misplacement of Milstar Satellite A loss of $1.23 billion. $1.23 billion 

1999 Mars Climate Orbiter A loss of $85 million. $85 million 

1999 Mars Polar Lander A loss of $120 million. $120 million 

1999 Hershey Foods Corporation ERP Implementation Failure A loss of $151 million. $151 million 

20 0 0 Nike’s Supply-Chain Software Failure A loss of $100 million. $100 million 

2002 CIGNA’s CRM System Data Migration Failure A loss of $445 million. $445 million 

2002 Sydney Water’s CIBS Project Failure At least a loss of $61 million. $61 million 

2002 FAA’s Advanced Automation System Failure A loss of $1.5 billion. $1.5 billion 

2003 AT&T CRM Upgrade Problem AT&T lost a significant number of potential new customers. 

2003 Power Outage of Northeastern US and Southeastern Canada The blackout affected more than 50 million people and cost a total of about $13 billion. $13 billion 

2003 McDonalds’ Innovate Project Failure A loss of $170 million. $170 million 

2004 Loss of Voice Communication between FAA Air Traffic Control 

Center and Airplanes 

FAA Air Traffic Control Center lost voice contact with more than 400 airplanes they were 

tracking over the southwestern United States. 

2004 Hewlett Packard ERP System Migration Failure A loss of $160 million. A loss of $160 million 

2004 Cancellation of Avis PeopleSoft ERP System A loss of $54.5 million A loss of $54.5 million 

2005 DART Mishap “Type A” (mission failure exceeding a government loss of $1 mission). More than $1 million 

2005 Prius Software Glitch Work hours for engineers to examine the cars and reprogram the electronic control module. Also 

the reputation of Toyota and the trustworthy for the new type of vehicle. 

2005 Money Loss at Tokyo Stock Exchange A loss of $225 million A loss of $225 million 

2006 Mars Global Surveyor A loss of $154 million and the science. $154 million 

2006 Shutdown of Hartsfield-Jackson Atlanta International Airport The airport falsely evacuated the security area for two hours; flights were backed up for days 

2006 London Tube Closure Widespread delay to the London Underground. 

2006 Outages in Tokyo Stock Exchange The exchange stopped operating for several hours during two outages. 

2007 Failure of Windows Genuine Advantage Reputation of Windows damaged due to the increasing dislike of their anti-piracy tool. 

2007 Cancellation of Mission by U.S. Air Force F-22 Raptors Air Force lost 48 hours of time and work hours for engineers to fix the code that was flawed. 

2007 Enron Payouts to Employees Stalled 7700 people were overpaid; 12,800 didn’t receive enough. $9.15 million, or $11.2 million with 

interest 

20 07–20 09 Atlanta Water Bill Spike Residents experienced unusual peaks in their water usage. Reputation loss and man powers to 

recalculate the water usage. 

2008 Emergency Shutdown of the Hatch Nuclear Power Plant The nuclear power plant was forced to shut down for 48 hours, which caused $2 million loss. $2 million loss 

2008 Toronto Stock Exchange (TSX) Failure TSX shut down 18 minutes after opening and remain un-operational for the entire day. 

2008 Security Flaw in Maximo Heart Monitor The devices could impose potential danger on users due to security flaws. 

2010 GPS Dark Up The problem rendered around 10,0 0 0 U.S. military GPS receivers useless for days. 

2011 Standards & Poor’s Erroneous Alert on France’s Credit Rate Euro weakened against the dollar and French bond prices fell. 

2011 Nissan Leaf Software Glitch Man powers to reprogram the control software. Man powers to reprogram the control 

software 

2014 Security Flaws in Medical Devices Devices might be controlled remotely and became the cause of severe issues. 



W.E. Wong et al. / The Journal of Systems and Software 133 (2017) 68–94 85 

Table 6 

Summary of causes and their corresponding accidents. 

Causes Accidents 

C01: Faulty value computation AA07, AA10, AB01, AB03, AB12, AB29 

C02: Security AB21, AB27 

C03: Inadequate design logic AA01, AA02, AA04, AA06, AA08, AB05, AB13, AB20, AB32 

C04: Compatibility AA03, AB19, AB33, AB35, AB43 

C05: Coding mistakes AA11, AA12, AA13, AB02, AB04, AB06, AB07, AB08, AB09, AB10, AB15, AB17, AB22, AB23, AB24, AB28, AB30, AB37, 

AB39, AB40 

C06: Complexity AA06, AB16, AB32, AB33, AB44, AB45 

C07: Improper reuse AA07, AB01 

C08: No warning AA09, AA14, AB14, AB18, AB25 

C09: Schedule pressure AB05, AB44, AB45, AB47 

C10: Faulty operations AA01, AA02, AA03, AA05, AB13, AB25 

C11: Conflict and insufficient manual AA07, AA09 

C12: Ignoring warnings AA02, AA07 

C13: Failure to communicate AB04, AB06, AB11, AB32, AB34, AB35, AB41 

C14: Failure of SQA and testing AA04, AA08, AA09, AA10, AB01, AB08, AB09, AB10, AB11, AB12, AB15, AB16, AB17, AB19, AB22, AB33, AB34, AB35, 

AB36, AB44, AB45 

C15: Human variables AA04, AB18, AB25 

C16: No backup plan AA11, AB25, AB34, AB43 

 

5

 

l  

c  

m  

t

 

 

 

 

 

 

 

 

 

 

 

5

 

s  

s  

o  

m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

c  

t  

p  

m  

t  

t  

t

 

 

 

 

 

 

 

5

 

c  

h  

o  

i  

 

 

 

 

 

 

 

 

 

 

compelling ” ( Bousquin, 2001 ). 
to remotely control the devices and induce a deadly jolt of

electricity. 

.1.3. C03: Inadequate design logic 

Incomplete logic behind the software system design can also

ead to severe accidents. For safety-critical systems, due to the

omplexity of the design as well as to the complicated environ-

ent in which the systems perform, it is difficult in some cases to

ake every aspect of the functioning process into consideration. 

1. In AB05, the spacecraft monitored the landing sensor as the

only indicator of ground contact. However, the engineers failed

to notice that the legs of the spacecraft could depress and

release momentarily due to the Mars’ atmosphere. Therefore,

the spacecraft shut off the engines while too far above the

Mars surface. 

2. Though the crash of AA02 can be attributed to China Airlines’

failure in upgrading their on-board computer system, the logic

of the system was not able to consider specific scenarios and it

finally cost the aircraft. 

3. In AA03, the Flight Management System (FMS) interface was

partly to blame due to the chosen implementation of the

destination confirmation, which ultimately led the pilot to

selecting the wrong city and a dangerous flight path. 

.1.4. C04: Compatibility 

Software forms the essential core of many systems, especially

ome safety-critical systems. However, flawed interactions among

oftware modules or between software and hardware components

ften result in unplanned behavior which can lead to serious

ishaps with these systems. 

1. In AB24, the Nissan Leaf had a flaw related to compatibility

between the controller software for the air conditioning unit

and the voltage sensor responsible for activating the failsafe

mode. The failsafe mode was selected when the combination

of these components created an incorrect reading of voltage

which prevented the car from restarting. 

2. In AB11, the failure of AT&T’s CRM system upgrade was due to

interoperability problems that occurred when AT&T chose to

switch its system for handling Local Number Portability (LNP)

from TSI to NeuStar. TSI and NeuStar had different interpre-

tations of the Wireless Intercarrier Communications Interface

Specifications (WICIS), which led to the inability of TSI’s system

to communicate with NeuStar’s leading to the failure of the

CRM. 
3. In AB33, the supply-chain software developed by i2 also

suffered from compatibility issue between two separate ap-

plications. The two applications used unique rules and data

formats which resulted in the consequence that operators had

to download the data from one application and reload the data

into another. 

.1.5. C05: Coding mistakes 

Coding mistakes (also called programming errors or errors

ommitted during the code implementation stage) are some of

he most commonly observed software-related causes of the

reviously described accidents (see Table 6 ). Even though these

istakes could be eliminated by peer reviews, static code analysis,

est, and verifying and validating the system thoroughly, some-

imes it is just not possible to root out all programming errors due

o project time and budget constraints. 

1. In AA06, a programming error in the software left a memory

leak within the system, which slowly drained the available

memory until the system had no more resources and halted. 

2. In AB08, the code was written to send an electronic copy of

each ATM withdrawal and transfer to the computer system that

processes paper checks. Withdrawals were deducted from the

bank’s customer accounts once by the ATM and then again by

the check system. 

3. In AB09, the failure was caused by misplacement of a break

statement in the code. 

.1.6. C06: Complexity 

Software system functionality has expanded dramatically in re-

ent decades ( Davis et al. ). As a result, the complexity of software

as also become a key issue in determining the operational quality

f the software. The more complex the software, the more likely

t is that it will contain faults ( Wong et al., 2016 ). Some examples:

1. A significant incident caused by increased complexity was

evident in AB16. The project was way too complicated and

involved stakeholders from various organizations. In order to

meet the requirements from all parties, the complexity went

way beyond control and the project eventually failed. 

2. In the case of AB33, the system was not originally designed

for the shoe and apparel industry. This led Nike to needing i2,

the software vendor, to make a number of customizations to

the software base. However, neither Nike nor i2 had the ability

to properly manage the large and increasingly complex system

even though the concept of the system was “wonderful and



86 W.E. Wong et al. / The Journal of Systems and Software 133 (2017) 68–94 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

m  

o  

i  

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

r  

b  

l  

t  

c

 

 

 

 

 

 

 

 

 

 

 

lower than that required for safe flight in the area. 
5.1.7. C07: Improper reuse 

Software reuse has become a major trend in software engineer-

ing ( Bauer and Vetro, 2016 ). Undoubtedly, reusing that software

which have been proven to be robust on previous models can

help us reduce the overall development costs. However, improper

reuse could be attributed to as the causes for failures of software

systems. 

1. In AB01, the software used for Ariane 5 space shuttle was

entirely reused from Ariane 4. However, no simulation testing

was performed to ensure the reused software’s performance on

newly designed hardware platform. 

2. In AA07, the software for Therac-25 was reused from Therac-20.

However, the blocking shield in Therac-20 has been removed

from Therac-25. Therefore, patients were imposed to excessive

radiations when a software failure occurred with no shield in

place. 

5.1.8. C08: No warning or error messages provided 

The warning or error messages are of great importance to op-

erators. These messages are vital for operators to gain the current

status of the systems. However, in some cases, no proper warnings

were provided, which resulted in several failures that could have

been prevented in the first place. 

1. The accident board for AA02 concluded that there was inad-

equate warning or recognition capability for the flight crew

to be alerted to the out-of-trim condition ( Federal Aviation

Administration Human Factor Team, 1996 ). 

2. In AA05, no warning was provided to remind the pilots of the

not-deployed flaps and slats. 

3. In AB25, no warning signs were provided when the operators

did tasks which should be taken care of very seriously. 

5.2. Contributing factors: non-software related 

Non-software related factors, whether related to the develop-

ment or the execution of a project, can also be attributed to the

cause of an accident. This section investigates such scenarios and

examines how each named factor may have contributed to the

failure of the system and provides some insight into avoidance of

future accidents. 

5.2.1. C09: Schedule pressure 

Most projects have a scheduled deadline for completion. It is

reasonable to have predefined milestones and a clear deadline for

such complex projects; however, an inappropriate schedule will

cause pressures which can lead not only to insufficient testing of

the systems at the back end of the project but also to reduced

overall product quality. Sometimes there is no flexibility in these

schedule, such as launch windows for inter-planetary spacecraft. 

1. In AB05, engineers focusing on the Mars Polar Lander over-

looked the false indication of ground landing by the spacecraft

due to significant schedule pressure. It has been stated in

the report that the micro probes vibration, which resulted in

shutdown of the system just before the landing, was identified

during testing. However, this problem was never rectified. 

2. This same general situation can also be found in AA06. Despite

the ambitious scope of the second attempt of their project,

completion was expected within a span of eleven months.

This significantly smaller time frame stands in contrast to

the three-year time span allowed for their less complex first

attempt. The contract with Solo Electronics was signed four

months before the expected delivery date, despite the fact that

System Options needed the communication equipment from

Solo Electronics in order to interface with its software. In the
end, the deadline was forced to be extended. This choice also

affected project costs. 

3. A similar cause can also be found in AB12. The navigation

logic’s gain setting was changed very close to the planned

launch, but the pressure to stay on schedule seemed to be the

main reason that they opted to not test the change in the gain.

.2.2. C10: Faulty operation of the system 

Certain accidents have occurred due to incorrect decisions

ade by human operators during a certain critical point of the

perational process. A single bad decision could possibly result

n a complete disaster; however, the accident could have been

voided at that critical juncture. 

1. One of the contributing causes of the AA01 was the faulty deci-

sion concerning the airplane. The pilots at the controls decided

to continue to land in spite of an excessive tailwind and ground

speed. This decision resulted in two consequences: they could

not control the aircraft due to a delay in the braking system,

and the aircraft landed beyond the normal touchdown point on

the ground. As a result, the Airbus collided with the earth bank.

2. The loss of the Solar and Heliospheric Observatory (SOHO) was

also due to a rapid faulty decision regarding the system. There

were three Gyros (A, B, and C) used in this satellite system. The

decision was made to deactivate Gyro A in order to conserve

satellite life, but this was not communicated to the ESR mode

of the spacecraft. Later, Gyro B was wrongly identified as faulty

and turned off when the altitude error drove the system to ESR

mode while integrating with Gyro A results. This resulted in

the loss of altitude control as well as the loss of telemetry and

power control. 

3. In AA04, an incorrect decision to modify the airport’s Minimum

Safe Altitude Warning System (MSAW) was responsible for the

aircraft’s collision with Nimitz Hill. The Guam airport chose

to limit the number of false alarms caused by the system

by modifying the system, which inhibited the program from

detecting an approaching plane that was below new lower safe

altitude. Therefore, airport operations failed to notify Flight

801 of potential danger. Additionally, the choice to conduct

the flight without the Guam Instrument Landing System was

a risk that helped lead to the accident. As a result, the pilots

of Flight 801 executed an incorrect technical procedure using a

non-precision approach to landing and prematurely descending

the plane into the terrain. 

.2.3. C11: Conflicting and insufficient manual 

In some cases, it is not the software itself that is faulty, but

ather the instructions on how to operate it. System manuals can

ecome confusing or contain outdated information, which can

ead to an incorrect assumption about the software and could lead

o a misuse of the software; this has been shown as causes or

ontributors of some accidents. 

1. In AA03, the naming conventions of the navigational charts

were inconsistent with those of the flight management system.

When the crew looked up the waypoint “Rozo,” the chart

indicated the letter “R” as its identifier. The FMS, however, had

the city paired with the word “ROZO.” As a result, when the

pilot entered the letter “R,” the system did not know if the

desired city was Rozo or Romeo. It automatically picks Romeo,

which is a larger city than Rozo, as the next waypoint. 

2. In AA04, the crew aboard Korean Air Flight 801 was using an

outdated flight map, which provided an incorrect value for the

Minimum Safe Altitude. Since this given altitude was lower

than the correct value, the plane was flying at a height much



W.E. Wong et al. / The Journal of Systems and Software 133 (2017) 68–94 87 

5

 

i  

s  

i  

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

t  

c  

a  

t  

u  

f  

a

 

c

 

 

 

 

 

 

 

 

5

a

 

d  

r  

t  

a  

H  

d

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

v

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

t  

s  

t  

 

 

 

 

 

 

 

 

c  

s  

m

6

 

c  

u  

f  

p  

a

.2.4. C12: Ignoring warnings 

Deliberately ignoring a warning given by a system could result

n a poor outcome. When someone operating a software related

ystem chooses to dismiss system-generated cautions and warn-

ngs, the potential for a mishap rises. Examples show that ignoring

hese warnings could make the difference between life and death. 

1. In AA01 incident, the pilots ignored the wind shear warning

and made a decision to “Land” instead of “Go-Around”. 

2. In the AA06, the second project, the LAS had received frequent

warnings. A number of letters from computer consultancies

and safety experts warned that the system was severely flawed.

However, the complaint letters and concerns were ignored by

the LAS executive management and were only addressed with

excuses. 

3. In the failure of AB32, the company chose not to listen to early

warnings given by a consulting firm in Chicago, which strongly

advised the drug company against the using a particular soft-

ware product because it would not meet their expectations.

However, FoxMeyer decided to keep their choice based on the

software product’s reputation. Ignoring this warning caused

the loss of millions of dollars and, in the end, was a significant

contributor to the bankruptcy of FoxMeyer. 

4. In the case of AB33, the vice president of marketing for i2 men-

tioned that i2 had always recommended that their customers

deploy their software system through various stages. However,

Nike insisted on deploying it simultaneously to thousands of

suppliers and distributors. 

.2.5. C13: Failure to communicate 

In certain projects, there are cases in which the development

eams, management teams, and the customers do not communi-

ate effectively with each other, which results in some confusion

nd certainly some lack of clarity. Effective communication be-

ween different roles among different teams not only reduces

ncertainty but also improves performance. This is a fundamental

actor in the whole life-cycle of the software under development,

 human-intensive effort. 

Several incidents of record could be attributed to failure of

ommunications to some extent. For example: 

1. In AB06, the lack of communication between two operators of

the spacecraft independently updated the two copies of the

on-board system. The conflict was identified as the root cause

for the incident. 

2. In AB04, the investigation board indicated that some commu-

nications channels among project engineering groups were too

“informal” ( Isbell and Savage ). 

3. In AB11 and AB35, inconsistencies in data model between two

sub-systems resulted in the two incidents. 

4. In AB34, the lack of communication between technical per-

sonnel and on-site operators caused the consequence that ERP

system could not identify specific storage locations. 

.2.6. C14: Failure of software development, testing and quality 

ssurance process 

A number of accidents were likely caused by issues in the

evelopment of software and quality assurance. It is critical to

eview our software development work in a systematic manner

o ensure the software under development is checked thoroughly

nd that software product quality reaches a satisfactory level.

owever, in reality, some software is not adequately tested before

eployment leaving latent defects to be encountered later. 

1. The most notable incidents caused by inadequate testing and

quality assurance processes among the accidents reviewed are

the AB01 and AB03. The Ariane 5 rocket launch of 1996 only
stayed operational for forty seconds before it was destroyed

down range. Had there been more rigorous review process,

system safety hazard analyses, tests, and/or real environment

simulation, the accident may have been avoided. 

2. The misplacement of the AB03 was due to a failure of the

software quality assurance process; the wrong roll rate filter

constant led to the crash. This error should have been found

during the software reviews, testing, and/or system verification.

3. Other cases such as the failure of AB05, AA06, AB08, and AB15

all share similar causes, as insufficient workforce and project

time led to short-cuts taken in the software development

process, significantly reducing the effort focused on testing and

quality assurance. 

.2.7. C15: Human variables 

While different technical reasons for an accident exist, the

ariable of human activity must be taken into consideration: 

1. In AA04, a contributing factor to the fatal incident was over-

looked yet preventable – fatigue ( National Safety Transportation

Board, 20 0 0 ). The pilot was not operating under the proper

mental conditions, and thus, he was unable to control the

aircraft in the appropriate manner. 

2. For AB25, one member of the Windows Genuine Advantage

team accidently sent pre-production code to the production

servers. Since the production servers did not yet have the

ability to enable stronger encryption or decryption of product

keys during activation and validation, the production servers

declined the valid product keys ( MSDNArchive, 2007 ). 

3. In AB11, there had been various rumors of future outsourcing

and layoffs. This affected the project team’s productivity due

to a loss in morale. Some of the employees were searching for

new jobs instead of focusing on the work assigned to them

( Koch, 2004 ). 

.2.8. C16: No backup plan 

Several projects were created with the intention to replace

heir current systems, as companies tend to throw out their old

ystems in favor of new ones. This leads to various problems, since

he new system may be faulty, and unpredictable issues may arise.

1. In AB11, there was no backup plan in the case of an upgrade

failure. AT&T was unable to roll back to the previous version

of the system, since the “project managers didn’t preserve a

sufficient portion of the previous version to make this possible”

( Koch, 2004 ). 

2. Another example is AB34. The company did not have a

contingency plan in place when the ERP system was being

implemented. When the project eventually failed, the company

did not have any backup and soon went bankrupt. 

3. Similar cause can also be identified in AB43. The data was

impossible to be recovered when a crash happened. 

In the table below, we have categorized all the accidents dis-

ussed in this paper based on the causes identified. Note that one

pecific accident could appear in different rows due to the fact that

ultiple causes can be identified for the corresponding accident. 

. Lessons learned 

In this section, we present the lessons learned from the oc-

urrence of the previously described accidents in order to help

s prevent the same or similar accidents from happening in the

uture. Instead of summarizing the lessons from each accident, we

resent the lessons in three perspectives: managerial, technical,

nd sociocultural, respectively. 



88 W.E. Wong et al. / The Journal of Systems and Software 133 (2017) 68–94 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

n  

u  

c  

t  

p  

s  

p  

s  

e  

a  

e  

n  

w

 

m  

f  

t  

t  

s

 

u  

f  

t  

b  

o  

t  

t  

t  

o  

a  

t  

t  

a  

a

 

n  

b  
6.1. Managerial 

With the development of software systems, they are becoming

increasingly large when compared with those decades ago. There-

fore, issues related to software project management have been

revealed as the root cause for most of the failed projects which

have been canceled due to the fact that they could not fulfill

customers’ expectations. As it has been stated in ( Office of the

Under Secretary of Defense for Acquisition, 1987 ), “the task force

is convinced that today’s major problems with military software

development are not technical problems, but management prob-

lems.” Therefore, it is of great value that managers of large-scale

software systems pay more attentions to the management of their

project under development and lay a solid foundation for their

projects to be successful. 

(1) Properly estimate the time and costs 

It is important to estimate the time and costs for specific

software projects. First, a good estimation helps managers make

appropriate decisions in various situations and keep track of the

direction a project is moving forward to. Second, a blue print

could be given to managers and engineers on how long the project

should take and how much money it would require. Third, the esti-

mation could provide hints on how well the project is progressing.

In addition, project baselines as well as time-phased budgets are

largely dependent on how good the estimation is conducted. 

However, cost and schedule overrun have become major issues

in the industry of software development ( Ewusi-Mensah, 1997 ).

Though it is understandable for companies to desire completion of

a software product with minimum cost and time, the development

of software should not be underestimated in its complexity. One

has to admit that even though budget and schedule pressures can

help shorten the development cycle as well as reduce the money

spent in the process, the development and testing effort f or a

specific project may also be degraded, which could significantly

lower the quality of the software produced. Moreover, there is no

tangible, accurate estimator for software development cost or time.

Thus, projects should be expected to encounter various situations

that will slow down development and raise the cost. In the Mars

Polar Lander mission, the cost-risk tradeoff should have been

carefully monitored even though costs were tightly constrained.

However, an insufficient amount of time and staffing led to fewer

system checks. Furthermore, for the DART mishap, despite the

fact that the modification was made with the launching date

approaching, the change still should have been tested, since it did

influence the quality of the product. 

Usually several categories of approaches can be applied in the

process of estimating the time and costs: 

• Estimating by analogy are based on the comparison between

the proposed project and previously completed similar projects.

Actual data from the completed projects are extrapolated to

estimate the proposed project. This method can be used

either at system-level or at the component-level. However,

disadvantages also exist. For example, the estimation is partly

determined by how well the proposed project is described and

the similarity between projects is evaluated. Also, the approach

is based on the assumption that effort s of the proposed project

are known based on previous similar projects. 
• Top-down estimates are achieved by someone who uses his/her

knowledge and/or experience to determine the duration of the

project as well as the total costs. However, these estimates

are usually from top managers who may not have enough

knowledge of how the project is actually implemented. In

addition, no time and effort s f or specific tasks are considered.

One example is the AB16. The estimates of the project were

almost useless since no engineer was actually involved in the
estimating process. As a result, the project went way over

budget and experienced long delays in delivering the project. 
• Though the top-down approaches suffers from these short-

comings, they are useful in the early stage of software project

planning. From a strategic level, these approaches can help

managers evaluate various proposals for software projects

and select the better ones for further consideration. Several

top-down approaches could be considered, such as Consensus

Methods ( Fink et al., 1984 ), Ratio Methods ( Shwartz et al.,

1995 ), Apportion Methods ( Fink et al., 1984 ), etc. 
• Bottom-up estimates use the estimated cost of each software

components and then combine the results to arrive at an

estimated cost of overall project. It aims at constructing the

estimate of a system from the knowledge accumulated about

the small software components and their interactions. The

leading method using this approach is COCOMO’s detailed

model ( Boehm, 1981 ). Compared with those top-down ap-

proaches, these approaches are more stable and can provide

more accurate estimates. However, shortcomings also exist. The

time and costs for system-level are sometimes ignored, and

necessary information may not be available in early phases. 
• Algorithmic methods have also been applied in this area such

as Putnam model ( Gupta et al., 2016 ), Function Point Analysis

Based Methods ( Gupta et al., 2016 ), etc. 

(2) Improve operational procedures and processes and

roduce accurate documentations 

Appropriate procedures and processes for operating the system

eed to be followed properly and thoroughly so that testers and

sers of the system will be able to test or operate the system

orrectly. Though it may be preferable to use flexible software

hat meets the requirements of different groups of users, im-

lementation of the software, especially for situations that are

afety-critical, should be designed to avoid ambiguity. In addition,

roper warnings and messages regarding the misuse of the system

hould be displayed to the end users whenever potential risks

xist. The most notable case is the AA09, in which the physicians

pplied the software in a way that was inappropriate. Another

xample is the accident of AA03, in which the system displayed

o message regarding the next waypoint selected by the pilots

here there were multiple cities with similar names. 

Operators should also be more carefully trained and bear in

ind that the recommended procedures must always be per-

ormed. For example, in the accident of AA05, the pilots ignored

he pre-flight checklist and just simply repeated “checked” during

he procedure. Therefore, they failed to realize that the flats and

lats were not deployed for takeoff. 

In addition, manuals should be written thoroughly and kept

p to date with the latest model of the system, as this is the

oundation to ensure correctness of the operations performed by

he end-users. Even though operators are more likely to proceed

ased on the training they received and won’t turn to the manuals

r other documentations for help, bad things could happen once

hey read the manuals or other documentations which happened

o be questionable. This lesson can be learned directly from both

he AA01 and AA03 accidents. For the former accident, the aircraft

peration manual contained conflicting information, such as the

ppropriate speed to use to counter wind shear; for the latter,

he inconsistency of navigational charts was a contributing factor

hat resulted in wrong selection of the next waypoint. The same

pplies to the crash of AA04, which was caused by the usage of

n outdated version of the flight map. 

(3) Manage the risks properly during the implementation 

Bad risk assessment and management could bring extremely

egative impacts to projects under development. Due to the insta-

ility of factors involved in the development of software projects,



W.E. Wong et al. / The Journal of Systems and Software 133 (2017) 68–94 89 

m  

t  

w  

A  

a  

t  

m

 

i

 

 

 

 

 

 

 

 

(  

e  

o

 

p

 

v  

m  

m  

p  

t  

I  

a  

a

6

 

a  

t  

s  

s  

r

 

t

 

(  

l  

Q  

p  

t  

e

 

(  

p  

d  

m  

c  

e  

d  

s

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d  

i  

t  

e  

I  

m  

d  

a  

b  

d  

M  

a

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

b  

t  

t

 

t  

i  

h

anagers and engineers should put more attentions to the poten-

ial risks and figure out a way to manage them. In addition, it

ill also provide valuable recommendations for decision-making.

n example of bad risk assessment is AB16. Without an appropri-

te risk assessment, the managers failed to cancel the project when

here was no chance that the project could succeed. More and

ore money and man powers were spent on the project instead. 

Normally, the risk assessment and management are performed

n the following steps ( Project Management Institute ): 

• Risk identification, which aims to analyze the project and the

potential risks underneath; 
• Risk assessment based on the risks’ severity, likelihood of

occurrence, and the degree of controllability; 
• Risk response development, which contains the actions re-

quired to develop a contingent and actionable plan to reduce

the possible impacts brought by the risks. 
• Risk response control, which is mainly focusing on implement

the strategy and plans achieved in the previous steps and make

decisions (i.e., change management strategy, continue/cancel

the project., etc). 

Several most commonly seen risks have also been discussed in

 Boehm, 1991 ), which could act as the guidelines for managers and

ngineers to refer to and keep an eye on during their development

f large-scale software projects. 

(4) Keep a clear vision of the overall software development

rocess 

While this seems obvious, in some cases this lesson was clearly

iolated, such as in the London Ambulance Services outage. Project

anagers should have been deeply knowledgeable about the

echanism of the entire system as well as the tools used in the

rocess. In addition, the development process should have been

horoughly audited to ensure proper management of the process.

n this way, not only can the quality of the system be assured, but

lso the possibility of completing the development process within

 predefined time and budget limit will be significantly increased. 

.2. Technical 

Based on the descriptions we provided in previous sections,

 large number of accidents and project failures happened due

o technical issues, such as flawed program code, faulty in-

tructions, inconsistencies of interfaces between modules and/or

ub-systems. In this sections, we provide the lessons learned and

ecommendations on how to resolve these issues. 

(1) Quality assurance process should be performed more

horoughly 

A large number of accidents and failures discussed previously

i.e., AA04, AA05, AA06, and AA07) have been attributed to the

ack of proper quality assurance and adequate testing. Software

uality Assurance (SQA) involves the entire software development

rocess – monitoring and improving the process, making sure

hat any agreed-upon standards and procedures are followed, and

nsuring that problems are found and dealt with ( Hower ). 

SQA is essential to every software development process

 Rosenberg and Gallo, 2002 ). SQA improves development to de-

loyment time, reduces the number of incomplete or missed

eadlines, and reduces time spent on making sure that require-

ents, design, code, and documentation look the same by ensuring

onsistency without doing it all manually. Using SQA audits to

valuate that guidelines have been met before advancing in the

evelopment process is essential. Also, audits can be used to show

takeholders that continuous progress is being made on a project. 

The following aspects should be emphasized with respect to

he application of SQA techniques in real-life projects: 
• Standards and procedures. Every organizations or companies

should establish a set of standards and procedures since they

serve as the foundation of the software being developed. These

standards and procedures can be formed from unique perspec-

tives, such as requirements, design, code, documentation, and

so on. Examples can be found at ( NASA b). 
• Audit. Audit is the major technique used in the SQA process. It

should be carried out routinely throughout the entire life cycle

of software projects, especially for those large-scale systems

with functionalities closely related to safety and/or security.

The purpose of using an audit is to assure that proper control

procedures are being followed, that required documentation is

maintained, and that the developer’s status reports accurately

reflect the status of the activity. An example guideline for audit

can be found in ( NASA a). 
• Tools. Various tools can be used to help the SQA process.

These tools include QA C ++ , Jtest, Sablime Configuration

Management System, and so on. 

(2) Testing should be careful designed and strictly performed

Testing must be thoroughly performed in every phase of project

evelopment in order to ensure the quality of deliverables. Also,

t is essential to make sure that testing should be adequate and

hat software is always tested using real equipment rather than

xecuted in a simulation environment for verification purposes.

n the three incidents from AT&T (AB09, AB10, and AB11), the

odifications/updates should have been carefully evaluated to

etermine whether it would impact system reliability. For AB05

ccident, simulated stress testing and fault injection should have

een an integral part of the software testing process in order to

iscover hidden faults and to establish the limits of the system.

any of the problems that occurred could have possibly been

voided if thorough software testing had been put in place. 

Different techniques can be applied in different stages of

roject development: 

• In the early phase of implementation, unit testing should be

carefully performed to ensure that each component and/or

subsystems of the system perform as expected (AB04); 
• Later in the integration stage, integration testing as well as

system-level testing need to be carried out to make sure the

system meets the functional requirements defined (AB35); 
• Other tests aiming to prove the non-functional requirements

are guaranteed satisfactorily. These testing techniques include

stress testing (AA06), reliability testing (AB37), security testing

(AB21 and AB27), compatibility testing (AB33), fault injection

(AB05) and so on; 
• Once a system is modified or updated, regression testing

is need to ensure no other functionality is affected by the

modifications (AB08, AB09, and AB18); 
• Even well-tested, proven software must still be thoroughly

re-tested and rechecked when adapted and deployed in a

different environment (AA07 and AB01). It should not be auto-

matically assumed that new and reused hardware or software

components are working before the product is even tested; 
• Techniques such as boundary value analysis should also be

applied in the testing process (AB04 and AA01). 

Also, it is worth noting that various testing standards should be

pplied in the testing procedure. Each testing standard is fulfilled

y different test cases. Therefore, some bugs may be caught by

est set satisfying a specific type of testing standard but not by

est set achieved by using other standards. 

(3) Be prepared for the “bad”

Even though we are always trying our best to prevent bad

hings from happening, unfortunately they do. Therefore, it is

mportant that preparations are in place in case undesirable things

appen. The following aspects should be paid more attention to: 



90 W.E. Wong et al. / The Journal of Systems and Software 133 (2017) 68–94 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i  

s  

w  

l

 

 

 

 

 

e  

m  

t  

m

 

 

 

7

 

i

7

 

w  

a  

o  

c  

c  

f  

a  
• A ready-in-a-minute backup is available. When making updates

or creating a new system to replace the current one, one

should keep in mind the importance of having a backup plan

in case something goes wrong during the update or deploy-

ment of a new system. An example of this is the case of AB11.

AT&T should have considered making preparations for a backup

plan in order to avoid a huge loss of money and reputation.

However, they were pressured to fix the system and stabilize it

by the deadline. It is worth mentioning that, due to differences

between hardware and software, a simple “redundancy” of

the original system (meaning that the backup system runs the

same version of software used by the original system) may not

be useful in specific circumstances, as the backup system could

suffer from the same defects as the original one (AB23). Thus,

preparing a proper backup system is essential, especially for

those critical systems (AB25). 
• In order to ensure the functioning of the system, engineers

should design multiple error/failure handling mechanisms. This

is even more important for safety-critical systems. Cases like

the AB01 clearly demonstrate the importance of customization

of failure handlers for various exceptions. 
• “Testing for the bad” is as important as “testing for the good”.

In other words, we should test not only what the system

should do but also what it should not do. (AB21 and AB27) 

(4) Design flaws should be avoided as completely as possible

A large number of accidents were caused by design flaws,

which signifies that there should be a greater effort to avoid them

in the future. Several aspects of the software should be considered

during the entire software lifecycle, i.e., security, complexity,

compatibility, and so on. This requires the whole cycle of soft-

ware development to be managed systematically and thoroughly.

Several accidents have demonstrated the importance of avoiding

these defects, such as the security flaws in AB21 and AB27, the

crash of AA03, the AB12, etc. 

(5) Warnings and/or error messages should be prompted

whenever feasible 

Warnings and error messages play an important role in noti-

fying the operators that something goes wrong and needs to be

taken care of. A number of accidents have been identified to be

caused by a lack of appropriate warnings (AA02, AA05, and AB23).

Warnings can be used in different scenarios, such as: 

• Notify the operators that something goes wrong and needs to

be taken care of (AA05); 
• Warn the operators that something bad would happen if

continue (AA02); 
• Remind the operators to be careful when doing the next

operations (AB23). 

6.3. Sociocultural 

Aside from the two aspects discussed above, the sociocultural

aspect is also of great value in organizations and companies. More

importantly, since the scale of software systems are becoming

larger and larger, it is nearly impossible for such systems to be im-

plemented solely by one single company. As a result, more atten-

tions should be paid to not only the sociocultural relationship be-

tween groups within an organization but also that among various

organizations involved in the implementation and maintenance. 

(1) Establish effective communication channels 

Communications between groups involved in the project im-

plementation are vital. If an engineer only focuses on the job

assigned to him/her and overlooked what others are doing, there

are plenty of reasons that doubts should be put on the outcome of

their project. Similarly, bad communications between stakeholders
nd software manufacturers as well as that between different

anufacturers can also lead the project to failure. 

Therefore, we suggest the following: 

• Encourage the communications between developers (AB06).

Various methods are helpful in creating an atmosphere that

is comfortable for communications, such as arrange more ex-

perienced developers sitting next to newbies, organize regular

group meetings, encourage the use a sketch board, etc. Also,

it is important to inform the colleague who is responsible

for the same task with you to avoid possible conflicts in the

modifications. 
• Establish an open environment for the developing team (AB35).

Instead of maintaining a hierarchical organizational structure

where the manager makes all the decisions, an open environ-

ment is vital in order to ensure opinions from various aspects

are considered. Consensus should be made whenever a conflict

occurs. 
• Keep the stakeholders aware of what is currently going on

(AB16). By doing so, the stakeholders and developers will stay

on the same page, which is not only important to ensure the

needs of stakeholders are met but also essential to relieve

developers’ pressure from the stakeholders. 

(2) Properly and adequately train the employees 

Employees not properly trained can be another factor in deal-

ng with the unexpected situations (AA06 and AB34). Therefore,

pecial notices should be paid to the training process, especially

hen you are introducing a whole new system to replace the

egacy one. Below are several recommendations on this item: 

• Spend sufficient time in training your employees (AA04); 
• Don’t train your employees long time when you don’t even

have access to the new system (AA06); 
• Don’t try to train your staff in time slots with large amounts of

tasks (AB34); 
• Always remind your staff that standardized operations must be

followed (AA05). 

(3) Control the human variables that may impair the project

We have to acknowledge that even the most experienced

mployees sometimes make mistakes. Therefore, efforts should be

ade to control these factors in order to limit their impacts to

he largest extent. The following aspects are of practical value to

anagers: 

• Keep an eye on the mental and physical conditions of your

employees (AA04); 
• Proper warning or error messages should be prompted when

faulty operations are performed (AA01); 
• Methods to retract an operational error should be implemented

in case something went wrong (AB18). 

. Discussions 

In this section, we discuss several factors which may have an

nfluence on the conclusions we made in this paper. 

.1. Selection of accidents 

We have to admit that it is impossible to cover every accident

hich may be relevant to this paper. In this paper, we select

ccidents for analysis based on several criteria, such as the extent

f the damage, the extent to which software played a contributing

ause, and the recentness of the accidents. Instead providing a

omplete list which contains all the accidents related to software

ailures, we intend to emphasize the importance of paying more

ttention to software by illustrating a picture of how defected



W.E. Wong et al. / The Journal of Systems and Software 133 (2017) 68–94 91 

s  

t  

c  

p  

g  

r

7

 

s  

f  

p  

s  

h  

a  

t  

s

7

 

H  

i  

d  

t  

d  

w  

d  

a  

c  

s  

d  

L

8

 

o  

r  

h  

s  

t  

c  

s  

s  

s

 

a  

a  

c  

s  

s  

s  

q

 

h  

h  

i  

t  

i  

o  

s  

s  

b  

r

A

 

F  

T

R

“  

“  

 

“  

“
A

A  

B  

B  

B  

B  

B  

 

B  

B
B  

B  

 

B  

B  

B  

B  

C  

C  

C  

“  

“
C  

C  

D  

 

D  

 

“  

E  

E  

E  
oftware could result in loss of time, money, and more impor-

antly, loss of life. In addition, we do not consider deliberately

onstructed software failures, such as in 1982 when CIA operatives

lanted a logic bomb in system controlling the trans-Siberian

as pipeline triggered a massive explosion (no loss of life was

eported) ( Safire, 2004 ). 

.2. Contributing causes, not SOLO causes 

It is also difficult to know the causal sequence between the

oftware failure and human harm, for example, software caused

ailure of the electrical grid leading to medical device or trans-

ortation system failures. As a result, software failures are not the

olo cause of various accidents. However, undoubtedly, software

as directly or indirectly played a causal role in each of the

ccidents discussed in this paper, which is why we emphasize

hat more attention should be paid to software, especially in

afety-critical areas. 

.3. Information sources 

We have tried not to bias our description of the accidents.

owever, due to the fact that we are unable to perform firsthand

nvestigations, the only information source is documents from

ifferent sources. As a result, information that are directly related

o the accidents may not be available, such as the manufacturers’

evelopment plan, quality control process, and so on. Though

e are very careful to only report what we can get from these

ocuments, there is no guarantee that the documents themselves

re correct. To deal with this problem, we search for multiple

onfirming sources to alleviate the possible biases. In fact, the

ame problem exists for all other surveys focusing on analyzing

ifferent accidents ( Charette, 2005 ; Geppert, 2004 ; Laplante, 2013 ;

eveson and Turner, 1993 ; Perrow, 2008 ; Pinkney, 2002 ). 

. Conclusions 

This paper reviews catastrophic accidents which led to losses

f life as well as losses of time and money. After identifying the

oles played by software in causing the accidents, though we

ave to admit that most of the accidents were not caused by the

oftware alone (other factors such as human errors, budgets and

ime limits, etc.), the software has been a key factor in the causal

hain of the accidents. It clearly alarms that the importance of

oftware systems grows exponentially due to the fact that these

ystems have been applied to most of advanced systems, including

afety-critical systems. 

By identifying the causes and the lessons learned from those

ccidents, either fatal or non-fatal, similar accidents could be

voided in the future when developing systems that share

ommon features with those failed. More importantly, a more

ystematically organized process of developing huge software

ystems should be applied and the verification and validation of

afety-critical systems needs to be deployed in order to assure the

uality of these software systems. 

Although discussions on several accidents, for example the

ealthcare.gov accident, have started on the risks forum, no one

as shown a direct causal relationship to failures of that site and

njury or loss of life. Moreover, it is clear that we need to wait

o know more. We are only beginning to understand the complex

nteractions of systems of (software) systems and the ubiquity

f embedded software in public infrastructure, transportation

ystems, consumer products, and more leaves me incredulous that

omeone who has worked on complex software systems could

elieve that it is possible to build such systems without faults and

isk to the public. 
cknowledgement 

The authors would like to give special thanks to Dr. Michael

. Siok from Lockheed Martin Aeronautics Company, Fort Worth,

exas for his help in preparation of this article. 

eferences 

2015 Servile Airbus A400M Atlas crash”, Wikipedia. ( https://en.wikipedia.org/wiki/
2015 _ Seville _ Airbus _ A400M _ Atlas _ crash ). 

American Airlines Flight 965: Crash on the Mountain”, AviationKnowledge: The

First Aviation WikiJournal. October 4, 2010 ( http://aviationknowledge.wikidot.
com/asi:american- airlines- flight- 965:crash- on- the- mountain ). 

American Airlines Flight 965 ′′ , Wikipedia. ( http://en.wikipedia.org/wiki/American _
Airlines _ Flight _ 965 ). 

Ariane 5,” Wikipedia ( http://en.wikipedia.org/wiki/Ariane _ 5 ). 
riane 501 Inquiry Board, July 1996. Ariane 5, Flight 501 Failure . 

ssociated Press, June 1 2010. Glitch Reveals Military Reliance on GPS Tech.

FOX News http://www.foxnews.com/tech/2010/06/01/glitch- shows- military- 
relies-gps . 

acon, F., June 11 2013. Failure Examples of IT Projects. IT Cortex http://www.
it-cortex.com/Examples _ f.htm . 

ass, A., March 15 2003. Integration Management – CIGNA’s Self-Inflicted
Wounds. CIO http://www.cio.com/article/2440140/enterprise-software/ 

integration- management- - - cigna- s- self- inflicted- wounds.html . 

auer, V. , Vetro, A. , July 2016. Comparing reuse practices in two large software-pro-
ducing companies. J. Syst. Softw. 117, 545–582 . 

erler, R., “Saving the Pentagon’s Killer Chopper-Plane,” Wired ( http://archive.wired.
com/wired/archive/13.07/osprey _ pr.html ). 

erman, M., February 9, 2016. What Happened After Washington State Ac-
cidentally Let Thousands of Inmates Out Early. The Washington Post

https://www.washingtonpost.com/news/post-nation/wp/2016/02/09/heres- 
what- happened- after- the- state- of- washington- accidentally- let- thousands- 

of- inmates- out- early/?utm _ term=.af947e3ee4ed . 

est, J., October 22 2004. Avis Cancels PeopleSoft ERP System. ZDNet http://www.
zdnet.com/avis- cancels- peoplesoft- erp- system- 3039171024 . 

oehm, B.W. , 1981. Software Engineering Economics. Prentice Hall . 
oehm, B.W. , January 1991. Software Risk Management: Principles and Practices.

IEEE Software . 
orrás, C. , 2006. Overexposure of radiation therapy patients in Panama: problem

recognition and follow-up measures. Revista Panam. Salud Publica 20 (2/3),

173–187 . 
ousquin, J., February 27 2001. i2’s Software Just Didn’t Do It for Nike. TheStreet

http://www.thestreet.com/tech/software/1322748.html . 
rady, P.J. , 20 0 0. In: Common Law Remedies for Computer Failures, 36. TRIAL,

pp. 73–79 . 
rooke, J., January 19 2006. After Panic, Tokyo Market Rebounds. New York

Times http://www.nytimes.com/2006/01/19/business/worldbusiness/19livedoor. 

html?pagewanted=all . 
urke, D., November 1995. All Circuits are Busy Now: The 1990 AT&T Long Distance

Network Collapse http://users.csc.calpoly.edu/ ∼jdalbey/SWE/Papers/att _ collapse. 
html . 

ain, F., November 10 2006. Contact Lost with Mars Global Surveyor. Uni-
verise Today http://www.universetoday.com/926/contact- lost- with- mars- 

global-surveyor/ . 

harette, R.N., September 02 2005. Why software fails. IEEE Spectr. http://spectrum.
ieee.org/computing/software/why-software-fails . 

harette, R.N., November 11 2011. S&P’s ‘technical error’ outrages French
government. IEEE Spectr. http://spectrum.ieee.org/riskfactor/telecom/internet/ 

sps- technical- error- outrages- french- government . 
China airlines A300 flight 140 at Nagoya,” ( http://lessonslearned.faa.gov/ll _ main.

cfm?TabID=3&LLID=64 ). 

Confirm Project,” Wikipedia ( http://en.wikipedia.org/wiki/Confirm _ Project ). 
one, E., April 9 2002. The Ugly History of Tool Development at the

FAA. Baseline http://www.baselinemag.com/c/a/Projects-Processes/ 
The- Ugly- History- of- Tool- Development- at- the- FAA/ . 

roomes, S. , 2006. Overview of the Dart Mishap Investigation Results. National
Aeronautics and Space Administration Technical report . 

alcher, D. , 1999. Disaster in London: the LAS case study. In: Proceedings of the IEEE

International Conference and Workshop on the Engineering of Computer-Based Sys-
tems (ECBS) ,March 7 – 12, pp. 41–42 . 

avis, S.J., MacCrisken, J., and Murphy, K.M., “Economic perspectives on software
design: PC operating systems and platforms,” Microsoft, Antitrust and the New

Economy: Selected Essays , Springer, 361–419. 
Edwin I. Hatch Nuclear Power Plant,” Wikipedia ( http://en.wikipedia.org/wiki/

Edwin _ I. _ Hatch _ Nuclear _ Power _ Plant ). 
lliott, D., June 1 2010. Glitch Shows How Much US Military Relies on

GPS Receivers. USA Today http://usatoday30.usatoday.com/tech/news/ 

2010- 06- 01- military- gps _ N.htm . 
lmer-Dewitt, P., January 29 1990. Ghost in The Machine. ( http://content.time.com/

time/magazine/article/0, 9171, 969266- 1, 00.html . ) . 
wusi-Mensah, K. , September 1997. Critical issues in abandoned information sys-

tems development projects. Commun. ACM 40 (9), 74–80 . 



92 W.E. Wong et al. / The Journal of Systems and Software 133 (2017) 68–94 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

/ ). 

 

 

 

 

 

 

 

H  

 

 

 

 

J  

 

 

 

 

 

 

K  

 

 

 

 

 

 

 

 

K  

 

L  

 

L  

 

 

L  

 

L  

L  

L  

L  

 

 

 

L
“  

L

M  

M  

M  

 

M  

M  

N  

 

N  

N  

N  

N  

N  

 

N  

N  

“  

N  

“  

O  

 

O  

 

O  

“  

P  

 

P  

 

 

Feder, B.J., March 12 2008. A Heart Device Is Found Vulnerable to Hacker Attacks.
New York Times http://www.nytimes.com/2008/03/12/business/12heart-web.

html? _ r=1& . 
Federal Aviation Administration Human Factor Team, June 18 1996. Report on: The

Interfaces Between Flightcrews and Modern Flight Deck Systems Available at
http://www.tc.faa.gov/its/worldpac/techrpt/hffaces.pdf . 

Federal Communications Commission, July 16 2002. FCC Extends Wireless Local
Number Portability Deadline by 1 Year to November 24, 2003. FCC News . 

Fink, A. , Kosecoff, J. , Chassin, M. , Brook, R.H. , September 1984. Consensus methods:

characteristics and guidelines for use. Am. J. Public Health 74 (9), 979–983 . 
Fox, M., Johnson, M.A., October 2 2014. Texas Hospital Makes Changes Af-

ter Ebola Patient Turned Away. NBCNews http://www.nbcnews.com/storyline/
ebola- virus- outbreak/texas- hospital- makes- changes- after- ebola- patient- turned-

away-n217296 . 
Fox-Meyer Drugs, September 16 2012. Why Projects Fail ( http://calleam.com/

WTPF/?p=3508 . 

Freudenheim, M., October 28 1997. Billing Problem Leads to Losses For
Big H.M.O. New York Times http://www.nytimes.com/1997/10/28/business/

billing- problem- leads- to- losses- for- big- hmo.html . 
Gallagher, S., Barrett, L., July 2, 2003. McDonald’s: McBusted. Baseline http://www.

pcmag.com/article2/0, 2817, 1173628, 00.asp . 
Geppert, L. , November 2004. Lost radio contact leaves pilots on their own. IEEE

Spectr. 41 (11), 16–17 . 

Gilmore, D., May 7 2009. The Top Supply Chain Disasters of All Time. Supply Chain
Digest http://www.scdigest.com/assets/FirstThoughts/09- 05- 07.php . 

Greenberg, A., October 22 2014. DHS Investigates Possible Vulnerabilities In
Medical Devices, Report Indicates. SC Magazine http://www.scmagazine.com/

dhs- investigates- possible- vulnerabilities- in- medical- devices- report- indicates/ 
article/378735/ . 

Gross, K., September 2004. Dispelling the Myth of the MV-22. Military.com http:

//www.military.com/NewContent/0, 13190, NI _ Myth _ 0904,00.html . 
Gupta, S. , Tiwari, S. , Singh, H. , Shukla, A. , Raghuvanshi, H. , November 2016. A com-

parison between various software cost estimation models. Int. J. Emerg. Trends
Sci. Technol. 3 (11), 4771–4776 . 

“Hacking the Human Heart: Medical Devices Found Subject to Technical At-
tack,” Future Crimes, March 7, 2010 ( http://www.futurecrimes.com/article/

hacking- the- human- heart- medical- devices- found- subject- to- technical- attack- 2

Hammonds, K.H., November 6 1997. Behind Oxford’s Billing Nightmare, How a
misconceived system cost the health-care giant millions. BusinessWeek http:

//www.businessweek.com/1997/46/b3553148.htm . 
Hansell, S., February 18 1994. Glitch Makes Teller Machines Take Twice What

They Give. New York Times http://www.nytimes.com/1994/02/18/business/
glitch-makes-teller-machines-take-twice-what-they-give.html?pagewanted= 

all&src=pm . 

“Hartsfield-Jackson Atlanta International Airport,” Wikipedia ( http://en.wikipedia.
org/wiki/Hartsfield –Jackson _ Atlanta _ International _ Airport ). 

Hays, K., July 3 2007. Data Error Stalls Enron Payouts to Employ-
ees. Houston Chronicle http://www.chron.com/business/enron/article/

Data- error- stalls- Enron- payouts- to- employees- 1839108.php . 
Hepher, T., “Exclusive: A400M Probe Focuses on Impact of Accidental Data Wipe.”

( http://www.reuters.com/article/us- airbus- a400m- idUSKBN0OP2AS20150609 ). 
ill, B., February 26 2007. Lockheed’s F-22 Raptor Gets Zapped by Interna-

tional Date Line. DailyTech http://www.dailytech.com/Lockheeds+F22+Raptor+

Gets+Zapped+by+International+Date+Line/article6225.htm . 
Hower, R., Software QA and Testing Resource Center. Web site: http://www.

softwareqatest.com/. 
Isbell, D. and Savage, D., “Mars Climate Orbiter Failure Board Releases Report, Nu-

merous NASA Actions Underway in Response,” Available at http://mars.nasa.gov/
msp98/news/mco991110.html. 

acobs, M., August 8 2013. 13 of the Largest Power Outages in History

– and What They Tell Us About the 2003 Northeast Blackout. Union
of Concerned Scientists http://blog.ucsusa.org/2003- northeast- blackout- 

and- 13- of- the- largest- power- outages- in- history- 199 . 
Janeba, M., 1995. The Pentium Problem http://www.willamette.edu/ ∼mjaneba/

pentprob.html . 
Kanellos, M., October 14 2005. Software Glitch Stalls Some Toyota Hy-

brids. CNET http://news.cnet.com/Software- glitch- stalls- some- Toyota- hybrids/

2100- 11389 _ 3- 5895574.html . 
Kaste, M., January 1 2016. 2 Prisoners Mistakenly Released Early Now Charged

in Killings. National Public Radio http://www.npr.org/2016/01/01/461700642/
computer- glitch- leads- to- mistaken- early- release- of- prisoners- in- washington . 

och, C., April 15 2004. Project Management: AT&T Wireless Self-
Destructs. CIO http://www.cio.com/article/2439700/project-management/

project-management –at-t-wireless-self-destructs.html . 

Koch, C., November 15 2002. Supply Chain: Hershey’s Bittersweet Les-
son. CIO http://www.cio.com/article/2440386/supply- chain- management/

supply- chain- - - hershey- s- bittersweet- lesson.html . 
Johnson, M.D., February 20, 2007. Raptors arrive at Kadena. The Official Web Site of

Kadena Air Base. ( http://www.kadena.af.mil/news/story.asp?id=123041749 . ) . 
JPL Special Review Board, March 20 0 0. Report on the Loss of the Mars Polar Lander

and Deep Space 2 Missions . 

“Korean Air Flight 801 ′′ , Wikipedia. ( http://en.wikipedia.org/wiki/Korean _ Air _ Flight _
801 ). 

Krebs, B., June 5 2008. Cyber Incident Blamed for Nuclear Power Plant
Shutdown. Washington Post http://www.washingtonpost.com/wp-dyn/content/

article/20 08/06/05/AR20 08060501958.html . 
rigsman, M., December 1 2007. PricewaterhouseCoopers (PwC) Sued by Syd-
ney Water over IT Failure. ZDNet http://www.zdnet.com/blog/projectfailures/

pricewaterhousecoopers- pwc- sued- by- sydney- water- over- it- failure/506 . 
ake, M., September 9 2010. 11 Famous Software Bugs. Computerworld

UK http://www.computerworlduk.com/in-depth/infrastructure/3239009/
11- famous- software- bugs/?pn=4 . 

ann, G.L. , January 2002. Is software really the weak link in dependable computing?
Workshop on Challenges and Directions for Dependable Computing . 

Laplante, P.A., February 3 2012. Answers to FAQs about Software Licensing.

The Institute http://theinstitute.ieee.org/ieee- roundup/opinions/ieee- roundup/
answers- to- faqs- about- software- licensing . 

aplante, P.A., November 25 2013. Misconceptions About Licensing Software
Engineers. The Institute http://theinstitute.ieee.org/ieee-roundup/opinions/

ieee-roundup/misconceptions-about-licensing-software-engineers . 
aplante, P.A., Thornton, M., July 2011. When do Software Systems Need to be Engi-

neered. Today’s Engineer http://www.todaysengineer.org/2011/Jul/licensure.asp . 

eveson, N. , September 1995. Safeware: System Safety and Computers. Addis-
on-Wesley . 

eveson, N.G. , Turner, C.S. , July , 1993. An investigation of the therac-25 accidents.
IEEE Comput. 26 (7), 18–41 . 

evin, A. , August 25 2008. Spanair Crash Probe to Look at Pilot Reactions. USA TO-
DAY . 

Leyden, J., November 25 2005. Fujitsu Execs Take Pay Cut After Tokyo Exchange

Crash. The Register http://www.theregister.co.uk/2005/11/25/stock _ exchange _
glitch _ fall _ out/ . 

“London Stock Exchange – Taurus,” Why Projects Fail, September 14, 2012 ( http:
//calleam.com/WTPF/?p=3474 ). 

os Angeles Times, “FAA to probe Radio Failure,” September 17, 2004. 
Lufthansa Flight 2904,” Wikipedia ( http://en.wikipedia.org/wiki/Lufthansa _ Flight _

2904 ). 

um, A., “Patriot Missile Software Problem.” ( http://sydney.edu.au/engineering/it/ ∼
alum/patriot _ bug.html ). 

ars Climate Orbiter Official website ( http://marsprogram.jpl.nasa.gov/msp98/
orbiter/ ). 

icrosoft, “Description of Windows Genuine Advantage (WGA)” ( http://support.
microsoft.com/kb/892130 ). 

odine, A., December 19 2008. Canada’s Biggest Stock Exchange Back After

Day-Long Shutdown. The Register http://www.theregister.co.uk/2008/12/19/tsx _
bites _ it _ for _ a _ day . 

oteff, J. , Parfmak, P. , October 2004. Critical Infrastructure and Key Assets: Defini-
tion and Identification. Congressional Research Service, Library of Congress . 

SDNArchive, August 29 2007. So What Happened?. Genuine Windows Blog http:
//blogs.msdn.com/b/wga/archive/2007/08/28/so- what- happened.aspx . 

ational Transportation Safety Board, 20 0 0. Controlled Flight into Terrain, Korean

Air Flight 801, Boeing 747-300, HL7468, Nimitz Hill, Guam, August 6, 1997 Air-
craft Accident Report , NTSB/AAR-99/02 . 

ASA, “NASA-GB-A301: Software Quality Assurance Audits Guidebook” ( https://
www.hq.nasa.gov/office/codeq/doctree/nasa _ gb _ a301.pdf ). 

ASA, “NASA-STD 8739.8: Standard for Software Assurance” ( https://www.hq.nasa.
gov/office/codeq/doctree/87398.htm ). 

ASA Science, “Mars Polar Lander” ( http://nasascience.nasa.gov/missions/
mars- polar- lander ). 

ational Safety Transportation Board, 20 0 0. Aircraft Accident Report

NTSB/AAR-00/01 . 
eumann, J., Lamar, M., November 11 2011. S&P ‘Oops’ on Rating of

France Is Probed. The Wall Street Journal http://online.wsj.com/article/
SB10 0 01424052970204224604577030083804142906.html . 

eumann, P.G. , October 28 1994. Computer-Related Risks, first ed. Addison-Wesley
Professional . 

eumann, P.G., January 31 2014. The Risks Digest: Forum On Risks To The Public In

Computers And Related Systems. retrieved http://catless.ncl.ac.uk/Risks . 
Nissan Leaf recalled for software glitch,” CBSNews April 21, 2011 ( http://www.

cbsnews.com/news/nissan- leaf- recalled- for- software- glitch/ ). 
IST Report, May 2002. Software Errors Cost U.S. Economy $59.5 Billion Annually

NIST Planning Report 02-3 . 
Northeast Blackout of 2003,” Wikipedia ( http://en.wikipedia.org/wiki/Northeast _

blackout _ of _ 2003 ). 

’Dell, J., April 12 2011. Nissan Leaf Quality Glitch Detected. Au-
toObserver http://www.edmunds.com/autoobserver-archive/2011/04/

nissan- leaf- quality- glitch- detected.html . 
ffice of the Under Secretary of Defense for Acquisition, September 1987. Report of

the Defense Science Board Task Force on Military Software Available at http:
//repository.cmu.edu/cgi/viewcontent.cgi?article=1946&context=isr . 

fficial Guam Crash Site Information Web Center. ( http://ns.gov.gu/guam/indexmain.

html ). 
Olympic Pipeline explosion,” Wikipedia ( https://en.wikipedia.org/wiki/Olympic _

Pipeline _ explosion ). 
erlman, D.T. , 1998. Who pays the price of computer software failure? Rutgers Com-

put. Technol. Law J. (Summer) 383–415 . 
Perrow, C. , 2008. Software Failures, Security, and Cyberattacks May Manuscript

draft . 

eterson, I. , February 16 1991. Finding Fault: The Formidable Task Of Eradicating
Software Bugs. The Free Library http://www.thefreelibrary.com/Finding fault:

the formidable task of eradicating software bugs.-a010381574 . 
Phillips, D.E. , November 1994. When Software Fails: Emerging Standards of Vendor

Liability Under the Uniform Commercial Code . 



W.E. Wong et al. / The Journal of Systems and Software 133 (2017) 68–94 93 

P  

 

P

P  

R  

 

R  

R  

R  

S  

S  

 

S  

S

S  

S  

S  

S  

S  

S  

“  

“
S  

C  

S  

S  

 

“  

“  

T
T

T  

“  

T  

 

“  

U  

U

W  

W  

 

W  

 

- 

W  

 

 

W  

W  

Y  

Z  

Z  

Z  

 

inkney, K.R. , 2002. Putting blame where blame is due: software manufacturer and
customer liability for security-related software failure. Albany Law J. Sci. Tech-

nol . 
rice, D. , April 1995. Pentium FDIV flaw-lessons learned. IEEE Micro 15 (2), 86–87 . 

roject Management Institute, “A Guide to the Project Management Body of Knowl-
edge,” fifth Edition. 

ahman, H.A. , Beznsov, K. , Marti, J.R. , May 2009. Identification of sources of failures
and their propagation in critical infrastructures from 12 years of public failure

reports. Int. J. Crit. Infrastruct. 5 (3), 220–244 . 

eport by the Mars Climate Orbiter Mission Failure Investigation Board ( http://
marsprogram.jpl.nasa.gov/msp98/news/mco991110.html ). 

euter News Service, February 19 1994. ATM Glitch Sucks Millions from
N.Y. Bank Accounts. Deseret News http://www.deseretnews.com/article/337438/ 

ATM- GLITCH- SUCKS- MILLIONS- FROM- NY- BANK- ACCOUNTS.html?pg=all . 
osenberg, L.H. , Gallo, A.M. , 2002. Software quality assurance engineering at NASA.

In: Proceedings of Aerospace Conference March 9-16, vol. 5, pp. 2569–2575 . 

afire, W., February 2 2004. The Farewell Dossier. New York Times http://www.
nytimes.com/2004/02/02/opinion/the-farewell-dossier.html . 

chmitt, E., May 20 1991. AFTER THE WAR; Army Is Blaming Patriot’s Computer
for Failure to Stop the Dhahran Scud. New York Times http://www.nytimes.com/

1991/05/20/world/after-war-army-blaming-patriot-s-computer-for-failure-stop- 
dhahran-scud.html . 

chmitt, E. , May 20 1991. Army is Blaming Patriot”s Computer for Failure to Stop

Dhahran Scud. New York Times . 
chneier, B. , April 21 2006. Software Failure Causes Airport Evacuation . 

cott, J.E. , 1999. The FoxMeyer drugs’ bankruptcy: was it a failure of ERP? Americas
Conference on Information Systems , August 13-15 . 

hafer, D. , Laplante, P.A. , 2010. In: The BP Oil Spill: Could Software be a Culprit, 12.
IT Professional, pp. 6–9 . 

hwartz, M. , Young, D.W. , Siegrist, R. , 1995. The ratio of costs to charges: how good

a basis for estimating costs? Inquiry 32 (4), 476–481 -1996 . 
labodkin, G., July 13 1998. Software Glitches Leave Navy Smart

Ship Dead in the Water. GCN http://gcn.com/articles/1998/07/13/ 
software- glitches- leave- navy- smart- ship- dead- in- the- water.aspx . 

OHO Mission Interruption Joint NASA/ESA Investigation Board, 1998. Final Report
August http://soho.esac.esa.int/whatsnew/SOHO _ final _ report.html . 

OHO Mission Interruption Joint NASA/ESA Investigation Board, 1998a. Preliminary

Status and Background Report July http://umbra.nascom.nasa.gov/soho/prelim _ 
and _ background _ rept.html . 

Solar and Heliospheric Observatory,” Wikipedia ( http://en.wikipedia.org/wiki/
Solar _ and _ Heliospheric _ Observatory ). 

Spanair Flight 5022 ′′ , Wikipedia. http://en.wikipedia.org/wiki/Spanair _ Flight _ 5022. 
peed, J.R. , November 1995. What do you mean I can’t call myself a software engi-

neer? IEEE Softw. 16 (6), 45–50 . 

owley, S., November 7 2003. Upgrade Glitch Downs AT&T Wireless’ CRM
System. InfoWorld http://www.infoworld.com/article/2675442/networking/ 

upgrade- glitch- downs- at- t- wireless –crm- system.html . 
terling, B. , November 1 1993. The Hacker Crackdown: Law and Disorder on the

Electronic Frontier. Bantam Books . 
torm, D., October 22 2014. DHS Investigates 24 Potentially Deadly Cyber

Flaws In Medical Devices. Computerworld http://www.computerworld.com/
article/2837413/security0/dhs- investigates- 24- potentially- deadly- cyber- flaws- 

in- medical- devices.html . 
TAURUS (Share Settlement),” Wikipedia ( http://en.wikipedia.org/wiki/TAURUS _
(share _ settlement) ). 

The Harder They Fall,” The Economist, October 30, 1997 ( http://www.economist.
com/node/104702/ ). 

he Standish Group International, Inc., 1999. Chaos: A Recipe for Success . 
he Standish Group International, Inc., 2010. Chaos Summary for 2010 . 

hurston, R., November 24 2006. Software Failure Causes Tube Closure. ZDNet http:
//www.zdnet.com/software-failure-causes-tube-closure-3039284859/ . 

Tokyo Stock Exchange,” Wikipedia ( http://en.wikipedia.org/wiki/Tokyo _ Stock _

Exchange ). 
omsho, R., October 20 1994. How Greyhound Lines Re-Engineered Itself Right

into a Deep Hole. Wall Street Journal http://business.baylor.edu/Charles _ Davis/
courses/acc5317/articles/toms1094.htm . 

Typing Error Causes $225 M Loss at Tokyo Stock Exchange,” Fox News,
December 09, 2005 ( http://www.foxnews.com/story/2005/12/09/ 

typing- error- causes- 225m- loss- at- tokyo- stock- exchange.html ). 

.S. Food and Drug Administration, 2013. 2013 Recalls, Market Withdrawals & Safety
Alerts http://www.fda.gov/Safety/Recalls/ArchiveRecalls/2013/ucm20035840. 

htm?Page=1 . 
SAF Accident Investigation Board, “Titan IV B-32/Centaur/Milstar Report”. 

ailgum, T., March 24 2009. 10 Famous ERP Disasters, Dustups and Disappoint-
ments. CIO http://www.cio.com/article/2429865/enterprise-resource-planning/ 

10- famous- erp- disasters –dustups- and- disappointments.html . 

allace, D.R. , Kuhn, D.R. , November 1999. Lessons from 342 medical device fail-
ures. In: Proceedings of the 4th IEEE International Symposium on High-Assur-

ance Systems Engineering. Washington, D.C., pp. 123–131 . 
astnage, J., February 14 2007. Pictures: Navigational Software Glitch Forces

Lockheed Martin F-22 Raptors Back To Hawaii, Abandoning First Foreign
Deployment To Japan. Flightglobal http://www.flightglobal.com/news/articles/ 

pictures- navigational- software- glitch- forces- lockheed- martin- f- 22- raptors-back

to- hawaii- 212102/ . 
eiss, K.A. , Leveson, N. , Lundqvist, K. , Farid, N. , Stringfellow, M. , October 2001.

An analysis of causation in aerospace accidents. In: Proceedings of the 20th
Digital Avionics Systems Conference, vol. 1. Daytona Beach, Florida, USA pp.

4A3/1-4A3/12 . 
ong, W.E. , Debroy, V. , Restrepo, A. , January , 2010. The role of software in recent

catastrophic accidents. IEEE Reliab. Soc. 2009 Annu. Technol. Rep . 

ong, W.E. , Gao, R. , Li, Y. , Abreu, R. , Wotawa, F. , August 2016. A survey on software
fault localization. IEEE Trans. Softw. Eng. 42 (8), 707–740 . 

ates, R.E., February 18 1994. Gasps Automatic As ATM Glitch Shrinks Account Bal-
ances. Chicago Tribune http://articles.chicagotribune.com/1994- 02- 18/business/ 

9402180194 _ 1 _ chemical- bank- atm- president- of- electronic- banking . 
amost, S., Phillips, K., March 2 2011. Skyrocketing Water Bills Mystify, Anger Resi-

dents. CNN http://www.cnn.com/2011/US/03/01/water.bills.war . 

hivich, M. , Cunningham, R.K. , March 2009. The real cost of software errors. IEEE
Secur. Privacy 7 (2), 87–90 . 

ollers, F.E. , McMullin, A. , Hurd, S.N. , Shears, P. , 2004. No more soft landings for
software: liability for defects in an industry that has come of age. Santa Clara

High Technol. Law J . 



94 W.E. Wong et al. / The Journal of Systems and Software 133 (2017) 68–94 

Science from Purdue University. He is a full professor and the founding director of the 

ity Assurance in Computer Science, University of Texas at Dallas (UTD). He also has an 
te of Standards and Technology (NIST), an agency of the US Department of Commerce. 

s (formerly Bellcore) as a senior research scientist and the project manager in charge 

 he was named the IEEE Reliability Society Engineer of the Year. His research focuses 
while reducing the cost of production. In particular, he is working on software testing, 

e has very strong experience developing real-life industry applications of his research 
nsactions on Reliability. He is also the Founding Steering Committee Chair of the IEEE 

nd Security (QRS) and the IEEE International Workshop on Program Debugging (IWPD). 

 degree in Software Reliability Engineering. He is currently on the PhD track under the 

f Texas at Dallas. Research interests include software testing, software fault localization, 

s Engineering at The Pennsylvania State University. He received his B.S., M.Eng., and Ph.D. 

e University of Colorado. He is a Fellow of the IEEE and SPIE and has won international 
 he has led the effort to develop a national licensing exam for software engineers. He 

s and he has published more than 33 books and 250 scholarly papers. He is a licensed 
ia. He is also a frequent technology advisor to senior executives, investors, entrepreneurs 

 advisory boards. His research interests are in software testing, requirements engineering 
ntment at Penn State he was a software development professional, technology executive, 
W. Eric Wong received his M.S. and Ph.D. in Computer 

Advanced Research Center for Software Testing and Qual
appointment as a guest researcher with National Institu

Prior to joining UTD, he was with Telcordia Technologie

of Dependable Telecom Software Development. In 2014,
on helping practitioners improve the quality of software 

debugging, risk analysis/metrics, safety, and reliability. H
results. Professor Wong is the Editor-in-Chief of IEEE Tra

International Conference on Software Quality, Reliability, a

Xuelin Li graduated from Beihang University with a B.E.

supervision of Professor W. Eric Wong at the University o
and software complex networks. 

Dr. Philip A. Laplante is Professor of Software and System

from Stevens Institute of Technology and an MBA from th
awards for his teaching, research and service. Since 2010

has worked in avionics, CAD, and software testing system
professional engineer in the Commonwealth of Pennsylvan

and attorneys and actively serves on corporate technology
and software quality and management. Prior to his appoi

college president and entrepreneur. 


